2018.06.12版 スライド32まではさらっといきます(スライド 4-6, 13, 18, 28のみしゃべる予定)。6/19 出席予定の持込PCの方は、Rパッケージ recountをインストールしておいてください。

農学生命情報科学特論| 第1回

¹大学院農学生命科学研究科 アグリバイオインフォマティクス教育研究プログラム ²微生物科学イノベーション連携研究機構 門田幸二(かどた こうじ) kadota@iu.a.u-tokyo.ac.jp http://www.iu.a.u-tokyo.ac.jp/~kadota/

講義予定

- 第1回(2018年06月12日)
 - □ カウント情報取得の続き
 - □ データの正規化(RPK, RPM, RPKM/FPKM)
- 第2回(2018年06月19日)
 - □ サンプル間クラスタリング、結果の客観的な評価(Silhouetteスコア)
 - □ クラスタリング結果の客観的な評価
- 第3回(2018年06月26日)
 - □ 発現変動解析(多重比較問題とFDR)、各種プロット(M-A plot)
 - □ 発現変動解析(デザイン行列や3群間比較)
- 第4回(2018年07月03日)
 - □ 機能解析(Gene Ontology解析やパスウェイ解析)

Contents

■ カウント情報取得の続き

- フォローアップ(なぜ365 genesとなったのか?)
- □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

①のsingle-endでアノテーション有の、②例題10の 実行結果として、365遺伝子のカウントデータしか得 おさらい られなかった。機能ゲノム学第4回のスライド82-99 (Rで)塩基配列解析 (last modified 2018/05/30, since 2010) • マップ後 | 出力ファイルの読み込み | htSeqTools(Planet 2012) (last modified 2013/06/19) このウェブベー マップ後 | カウント情報取得 | について (last modified 2018/05/30) NEW フリーソフトRと マッブ後 | カウント 情報取得 | single-end | ゲノム | アノテーション有 | QuasR(Gaidatzis 2015) modified 2018/05/29) (Windows2015 • マップ後 | カウント 情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders 2015) (last modified 2018/05/30) (2015/04/03) マップ後 | カウント 情報取得 | single-end | ゲノム | アノテーション 無 | QuasR(Gaidatzis 2015) (last modified 2018/05/26) マップ後日本ウン マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | QuasR • マップ後 What's new? • マップ後 (Gaidatzis 2015) NEW •「マップ後」¹• マップ後 ・「イントローフ・マップ後QuasRバッケージを用いたsingle-end RNA-seqデータのリファレンスゲノム配列へのBowtieによるマッピングから、カウントデータ •「H29年度N • 正規化」取得までの一連の流れを示します。アノテージョン情報は、GenomicFeatures バッケージ中の関数を利用してTxDbオブジェクトを ・正規化||ネットワーク経由で取得するのを基本としつつ、TxDbバッケージを読み込むやり方も示しています。マッピングのやり方やオブ ----(広田)」OwerP(Califateria 2015)たどなみ来口 ・ 正規化Ⅰ^{ション} 10.mapping single genome7.txt中のFASTA形式ファイルを乳酸菌ゲノムにマッピングする場合: 正規化 「ファイ」 マップする側のファイルは、サンプルデータ47のFASTA形式ファイル(sample RNAseq4.fa)です。 マップされる側のファイル • 正規化| は、Ensembl (Zerbino et al., Nucleic Acids Res., 2018)から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲノム 正規化 合: 配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。マッビ ング結果に対して、GFF3形式のアノテーションファイル mapping (Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3)を読み込んでカウント情報 日の2列目 を取得しています。 --best --str して、UC in f1 <- "mapping single genome7.txt" #入力ファイル名を指定してin f1に格納(RNA-seqファイル) in f2 <- "Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome in f1 in f3 <- "Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff in f2 4 #出力ファイル名を指定してout flc格納 out f <- "hoge10.txt" out f < out_t <- "hoge10.txt" param_reportlevel <- "gene"</pre> #カウントデータ取得時のレベルを指定:"gene", "exon", "prod param n #必要なバッケージをロード #バッケージの読み込み library(QuasR) library(GenomicFeatures) #バッケージの読み込み

おさ		当該C genen いこと	当該GFF3ファイルの中身。①Name=の右側の文字が genename。②この遺伝子領域にはName=genenameがな いこともわかる。これらが原因で2000行超にはならずに										がな こ						
##gff-version	3							365行	となって	てしる	まっ	たのカ	<mark>、も・・</mark>	·とま	考えた	.0			
##sequence-	regio	n Chromo	some	360 2	27	78	53												
#!genome-bu	#!genome-build European Nucleotide Archive A																		
#!genome-version GCA_000829395.1																			
#!genome-date 2014-11																			
#!genome-build-accession GCA_000829395.1																			
#!genebuild-la	ast-i	pdated 20	14-11										J						
Chromosome	ena	gene	360	1676		+		ID=gene	e:LOOC2	260_	100	010;Na	me=	dna/	\;bioty	pe	=proteir	1_cod	ing;d
Chromosome	ena	transcript	360	1676		+		ID=tran	script:B	AP84	4581	l;Pa <mark>ren</mark>	t=ge	ne:L	.00C2	60	_100010);Nan	ne=dr
Chromosome	ena	exon	360	1676		+		Parent=	transcr	ipt:B	AP8	4581;N	lame	=BA	P8458	1-	1;consti	tutive	e=1;e
Chromosome	ena	CDS	360	1676		+	0	ID=CDS	:BAP84	581;	Pare	ent=tra	nscri	pt:B	AP845	81	;protein	_id=E	3AP8
###																			
Chromosome	ena	gene	1852	2991		+		ID=gene	e:LOOC2	260_	100	020;Na	me=	dnaN	;bioty	ре	=proteir	n_cod	ling;d
Chromosome	ena	transcript	1852	2991		+		ID=tran	script:B	AP84	4582	2;Pa <mark>ren</mark>	t=ge	ne:L	.00C2	60	_100020);Nan	ne=dr
Chromosome	ena	exon	1852	2991		+		Parent=	transcr	ipt:B	AP8	4582;N	lame	=BA	P8458	2-	1;consti	tutive	e=1;e
Chromosome	ena	CDS	1852	2991		+	0	ID=CDS	:BAP84	582;	Pare	ent=tra	nscri	pt:B	AP845	82	;protein	_id=E	3AP8
###																			
Chromosome	ena	gene	3233	3457			2)	ID=gene	e:LOOC2	260_	100	030;bio	type:	=pro	tein_c	od	ing;desc	riptic	n=S4
Chromosome	ena	transcript	3233	3457		+		ID=trans	script:B	AP84	4583	3;Paren	t=ge	ne:L	.00C2	60	100030	;biot	ype=
Chromosome	ena	exon	3233	3457		+		Parent=	transcr	ipt:B	AP8	4583;N	lame	=BA	P8458	3-	1;consti	tutive	e=1;e
Chromosome	ena	CDS	3233	3457		+	0	ID=CDS	:BAP84	583;	Pare	ent=tra	nscri	pt:B	AP845	83	;protein	_id=E	3AP8
###																			
Chromosome	ena	gene	3467	4588		+		ID=gene	e:LOOC2	260_	100	040;Na	me=i	recF	;biotyp	e=	protein=	_codi	ng;de

①と②を(uge.txtのような中間ファイルを 作成せずに)行うやり方を説明します。

④が①の部分に相当し、⑤が②の部分に相当します。中間ファイルのuge.txtを 作成していないことがわかります。

Tips:パイプ()

もう1つの例。①と②をパイプで連結したのが③のコマンド。同じ結果になっていることがわかります。

5	$-ins \cdot (\sqrt{3}/3)$	コマンド。同	司じ結果になっ)
u@biel		t. 🖪	(11-2/ 2)	
allen	<pre>iu@bielinux[mapping_kiso3] pwd</pre>	•• 20	[11:32午前]	
	/home/iu/Desktop/mac_share/mapping_kiso3 iu@bielinux[mapping_kiso3] ls	00092020	[11:32午前]	
	osome.Chromosome.gff3		5.1.50. CHI OII	
	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" iu@bielinux[mapping_kiso3] wc uge.txt 2262 24154 398272 uge txt</pre>	*.gff3 >	uge.txt [11:32午前]	
2	<pre>iu@bielinux[mapping_kiso3] grep -c "Name=" 457</pre>	uge.txt	[11:32午前]	
	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" 2262 24154 398272</pre>	*.gff3	WC	
3	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" e="</pre>	*.gff3	grep -c "Nam	
B	457			
	<pre>iu@bielinux[mapping_kiso3]</pre>		[11:34午前]	
2				
				-

①はID=geneとName=を含む行 を②ukyo.txtに保存するコマンド

行数を減らして眺める

@bieli	inux[~/Desktop/mac_share/mapping_kiso3] 🔹 🔒	💌 🜒 11:45 😃	
	<pre>iu@bielinux[mapping_kiso3] pwd</pre>	[11:32午前]	
Q	<pre>/home/iu/Desktop/mac_share/mapping_kiso3</pre>		
	<pre>iu@bielinux[mapping_kiso3] ls</pre>	[11:32午前]	
	Lactobacillus_hokkaidonensis_jcm_18461.GCA_00082939	95.1.30.chrom	
	osome.Chromosome.gff3		
	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3 ></pre>	uge.txt	
9	iu@bielinux[mapping_kiso3] wc uge.txt	[11:32午前]	
	2262 24154 398272 uge.txt	1	
	lu@blelinux[mapping_kiso3] grep -c "Name=" uge.txt	[11:32午前]	
	40/	110	
	2262 24154 398272	WC	
-	<pre>iu@bielinux[mapping kiso3] grep "ID=gene" *.gff3 </pre>	grep -c "Nam	
V	e="		
	457		
	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3 </pre>	grep "Name="	
	> ukyo.txt		
-	iu@bielinux <mark>(2)</mark> pping_kiso3]	[11:44午前]	
6			
-			1
			- 8

									(1)ι	ukyo.txtをエクセルで眺めているところ。	
	シーズ 米ト	-+		· I -		6	よ	、フ	2 t	tRNA geneを発見。③対応するName=の	
	1丁安)	12	「派と		(巴	6	X.		右	側の文字列も他のものとは趣が異なる。	
1		6	ð			-					
		- ~	~~	₽ -~ L	林明 丰	_	0 =		r/+*++ \		
75	112 小一ム 押入		- シレイアフト 安3	-√ <i>Τ−</i> γ	仪凤衣	小	7 ₹	たけしたい F美で入力し(1/2201		IJ.
Kź	20 👻 : 🔅	× v	f _x							、	-
	А	В	С	D	E	FG	н			1	- -
1	Chromosome	ena	gene	360	1676	. +	. [[D=gene: 000	260	100010:Name=dnaA:biotype=protein_coding:des	
2	Chromosome	ena	gene	1852	2991	. +		D=gene:1 000	260	100020:Name=dnaN:biotype=protein_coding;des	
3	Chromosome	ena	gene	3467	4588	. +		D=gene:L000	260	100040:Name=recF:biotype=protein_coding:desc	
4	Chromosome	ena	gene	4588	6531	. +		D=gene:L000	260	100050:Name=gvrB:biotype=protein_coding:desd	
5	Chromosome	ena	gene	6559	9120	. +	. [[D=gene:LOOC	260	100060:Name=gyrA:biotype=protein_coding:desc	
6	Chromosome	ena	gene	10869	11165	. +	. 10	D=gene:LOOC	260	100080;Name=rpsF;biotype=protein_coding;desc	
7	Chromosome	e a	gene	11758	11994	. +	. 10	D=gene:LOOC	260	100100;Name=rpsR;biotype=protein_coding;desc	
8	Chromosome	2	tRNA_gene	23781	23853		. 10	D=gene:LOOC	260	_100220;Name=LOOC260_100220;biotype=tRNA;	
9	Chromosome	e a	gene	31109	34192		. 10	D=gene:LOOC	260	100290;Name=carB;biotype=prot cocoding;desc	
10	Chromosome	ena	gene	34185	35267		. 10	D=gene:LOOC	260	_100300;Name=carA;biotype=proten_coding;desc	
11	Chromosome	ena	gene	35510	36538	. +	. 10	D=gene:LOOO	260_	_100310;Name=argC;biotype=protein_coding;desc	
12	Chromosome	ena	gene	36551	37756	. +	. 10	D=gene:LOOO	260_	_100320;Name=argJ;biotype=protein_coding;desc	
13	Chromosome	ena	gene	37768	38511	. +	. 10	D=gene:LOOO	260_	_100330;Name=argB;biotype=protein_coding;desc	
14	Chromosome	ena	gene	38534	39670	. +	. 10	D=gene:LOOC	260_	_100340;Name=argD;biotype=protein_coding;des	
15	Chromosome	ena	gene	39675	40694	. +	. 10	D=gene:LOOC	260_	_100350;Name=argF;biotype=protein_coding;desc	
16	Chromosome	ena	gene	54793	56562		. 10	D=gene:LOOC	260_	_100510;Name=horA;biotype=protein_coding;desc	
17	Chromosome	ena	gene	56764	57642	. +	. 10	D=gene:LOOC	260_	_100520;Name=pepIP;biotype=protein_coding;de	
18	Chromosome	ena	tRNA gene	140244	140315	+		D=geneil 000	260	101280·Name=LOOC260_101280·biotype=tRNA·	-
淮库		(Ð								
半洲	#/UJ										

								<mark>少し下の</mark>	ほうも探索。	1rRNA_ge	neというの	もあり	
	行数	、さ	E減ら	5L	て彫	K	8	りる そうだ。 の情報を	うそらくQuasF 出力しないよ	Rは、tRNA_	geneとrRNA るのだろう。	A_gene 、とい	
	自動保存 💽 オフ) 📮	ۍ.	¢- ∓					ukyo.xls うようなこ	ことを経験値と	こして蓄積し	っていく。		
יד	パル ホーム 挿入	^.	-ジレイアウト 数5	式 データ	校閲表	沶	م	実行したい作業を入力してください	λ			☑ 共有(<u>S)</u>
Kź	20 - : >	× v	f _x										~
	А	В	С	D	E	FG	Н			L			
16	Chromosome	ena	gene	54793	56562			ID=gene:LOOC26	0_100510;Name⊧	=horA;biotype	e=protein_codi	ng;des(
17	Chromosome	ena	gene	56764	57642	. +	•	ID=gene:LOOC26	0_100520;Name⊧	=pepIP;biotyp	pe=protein_co	ding;de:	
18	Chromosome	ena	tRNA_gene	140244	140315	. +		ID=gene:LOOC26	0_101280;Name⊧	=LOOC260_1	01280;biotype	=tRNA;	
19	Chromosome	ena	gene	158199	158909			ID=gene:LOOC26	0_101520;Name⊧	=ubiE;biotype	=protein_codi	ng;desc	
20	Chromosome	ena	gene	179616	180083			ID=gene:LOOC26	0_101730;Name⊧	=greA;biotype	=protein_codi	ng;desc	
21	Chromosome	ena	gene	194973	196004	. +		ID=gene:LOOC26	0_101870;Name⊧	=lplA;biotype=	=protein_codir	ng;desc	
22	Chromosome	ena	gene	199757	201103	. +		ID=gene:LOOC26	0_101910;Name⊧	=trkH;biotype	=protein_codi	ng;desc	
23	Chromosome	ena	gene	201126	201788	. +		ID=gene:LOOC26	0_101920;Name⊧	=trkA;biotype	=protein_codi	ng;desc	
24	Chromosome	ena	gene	227737	228603	. +		ID=gene:LOOC26	0_102100;Name⊧	=parB;biotype	e=protein_codi	ng;des(
25	Chromosome	ena	gene	228621	229388	. +		ID=gene:LOOC26	0_102110;Name⊧	=parA;biotype	e=protein_codi	ng;desc	
26	Chromosome	ena	gene	229378	230259	. +		ID=gene:LOOC26	0_102120;Name∘	=parB;biotype	e=protein_codi	ng;des(
27	Chromosome	ena	gene	247127	248362	. +		ID=gene:LOOC26	0_102330;Name⊧	=gshA;biotype	e=protein_cod	ing;des	
28	Chromosome	ena	gene	310153	310422	. +		ID=gene:LOOC26	0_102950;Name⊧	=rpsN;biotype	e=protein_codi	ng;des(
29	Chromosome	ena	rRNA_gene	3 <mark>/ 0</mark> 417	351989	. +		ID=gene:LOOC26	0_103350;Name⊧	=LOOC260_1	03350;biotype	=rRNA;	
30	Chromosome	ena	rRNA_gene	215	355138	. +		ID=gene:LOOC26	0_103360;Name=	=LOOC260_1	03360;biotype	=rRNA;	
31	Chromosome	ena	rRNA_gene	3,5236	355351	. +		ID=gene:LOOC26	0_103380;Name=	=LOOC260_1	03380;biotype	=rRNA;	
32	Chromosome	ena	gene	358113	359453	. +		ID=gene:LOOC26	0_103410;Name=	=gshR;biotype	e=protein_cod	ing;des	
33	Chromosome	ena	gene	393862	394773	+		ID=geneil 00C26	0 103710 Name	=cvsK•biotvpe	e=protein_codi	ng desi	-
	ukyo	(÷						÷ •			Þ	
進備	齢 完了										╜	-+ 100%	

①ukyo.txtの中から、grep -vでtRNA_geneと rRNA_gene以外の行のみukyo2.txtに保存。

grep -v

iu@bielinux[~/Desktop/mac_share/mapping_kiso3] 1	📧 🜒 13:08 🔱
<pre>iu@bielinux[mapping_kiso3] pwd</pre>	[11:32午前]
<pre>/home/iu/Desktop/mac_share/mapping_kiso3</pre>	
<pre>iu@bielinux[mapping_kiso3] ls</pre>	[11:32午前]
Lactobacillus_hokkaidonensis_jcm_18461.GCA_0008293	95.1.30.chrom
osome.Chromosome.gff3	
<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3 ></pre>	uge.txt
<pre>iu@bielinux[mapping_kiso3] wc uge.txt</pre>	[11:32午前]
2262 24154 398272 uge.txt	
iu@bielinux[mapping_kiso3] grep -c "Name=" uge.txt	[11:32午前]
457	
iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3	WC
2262 24154 398272	
<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3 </pre>	grep -c "Nam
457	anan UNIana U
<pre>iu@bletinux[mapping_kiso3] grep "ID=gene" *.gtt3 </pre>	grep "Name="
> ukyo.txt	a tut l anon
w "rpNA gapa" > wkwa2 tyt	o.txt grep
iuchialinux[manning kiso2]	[1.07/1 46]
Tugorecrinix[mapping_kisos]	[1:0/十按]

457行から389行に

①wcでukyo2.txtの行数を確認。389行です ね。大分365行に近づいてきました。

@bieli	nux[~/Desktop/mac_share/mapping_kiso3]		î₁ Ja ∣	💌 🜒) 13:11 🟌	ţ
0	<pre>iu@bielinux[mapping_kiso3] ls Lactobacillus_hokkaidonensis_jo</pre>	m_18461.GCA_00	082939	[11:32午前] 5.1.30.chroi	m
	<pre>osome.Chromosome.gff3 iu@bielinux[mapping_kiso3] grep iu@bielinux[mapping_kiso3] wc u 2262 24154 398272 uge.txt</pre>) "ID=gene" *.g ige.txt)ff3 >	uge.txt [11:32午前]	
9	<pre>iu@bielinux[mapping_kiso3] grep 457</pre>) -c "Name=" ug	ge.txt	[11:32午前]	
	<pre>iu@bielinux[mapping_kiso3] grep 2262 24154 398272</pre>	• "ID=gene" *.g	,ff3	wc	
	iu@bielinux[mapping_kiso3] grep e=" 457	o "ID=gene" *.g	gff3	grep -c "Na	m
	<pre>iu@bielinux[mapping_kiso3] grep > ukyo.txt</pre>) "ID=gene" *.g	gff3	grep "Name=	
	<pre>iu@bielinux[mapping_kiso3] grep -v "rRNA gene" > ukyo2.txt</pre>	o -v "tRNA_gene	e" <mark>uky</mark> o	.txt grep	
0	iu@bielinux[mapping_kiso3] wc ι 389 4409 73753 ukvo2.txt	ikyo2.txt		[1:07午後]	
	<pre>iu@bielinux[mapping_kiso3]</pre>			[1:11午後]	

iu

ukyo2.txt

	自動保存 💿 オフ	. 5	• ¢° - ∓						u	▶ 経験上、機能ゲノム学第4回の最後のスライド141で
יד	イル ホーム 指	鄆入	ページ レイアウ	ト 数式 🗄	データ	校閲表	眎	\$	Q _実	新 も言及しているように、同じ遺伝子名のものがあるの
X	35 🝷 :	×	$\checkmark f_x$							ではという可能性を疑いながらざっと眺めると…
	А	В		: 1	D	Е	F	G	Н	I
1	Chromosom	ne en	a gene		360	1676	•	+	.	ID=gene:LOOC260_100010;Name=dnaA;biotype=protein_coding;de
2	Chromosom	ne en	a gene	1	1852	2991	•	+	.	ID=gene:LOOC260_100020;Name=dnaN;biotype=protein_coding;de
3	Chromosom	ne en	a gene	3	3467	4588	•	+	.	ID=gene:LOOC260_100040;Name=recF;biotype=protein_coding;des
4	Chromosom	ne en	a gene	4	1588	6531	•	+	.	ID=gene:LOOC260_100050;Name=gyrB;biotype=protein_coding;des
5	Chromosom	ne en	a gene	6	6559	9120	•	+	.	ID=gene:LOOC260_100060;Name=gyrA;biotype=protein_coding;des
6	Chromosom	ie en	a gene	10	0869	11165	•	+	.	ID=gene:LOOC260_100080;Name=rpsF;biotype=protein_coding;des
7	Chromosom	ne en	a gene	11	1758	11994	•	+	.	ID=gene:LOOC260_100100;Name=rpsR;biotype=protein_coding;de
8	Chromosom	ne en	a gene	31	L109	34192	•	-	.	ID=gene:LOOC260_100290;Name=carB;biotype=protein_coding;de
9	Chromosom	ne en	a gene	34	1185	35267	•	-	.	ID=gene:LOOC260_100300;Name=carA;biotype=protein_coding;des
10	Chromosom	ne en	a gene	35	5510	36538	•	+	.	ID=gene:LOOC260_100310;Name=argC;biotype=protein_coding;de
11	Chromosom	ne en	a gene	36	6551	37756	•	+	.	ID=gene:LOOC260_100320;Name=argJ;biotype=protein_coding;des
12	Chromosom	ne en	a gene	37	7768	38511	•	+	.	ID=gene:LOOC260_100330;Name=argB;biotype=protein_coding;de
13	Chromosom	ne en	a gene	38	3534	39670	•	+	.	ID=gene:LOOC260_100340;Name=argD;biotype=protein_coding;de
14	Chromosom	ne en	a gene	39	9675	40694	•	+	.	ID=gene:LOOC260_100350;Name=argF;biotype=protein_coding;des
15	Chromosom	ne en	a gene	54	1793	56562	•	-	.	ID=gene:LOOC260_100510;Name=horA;biotype=protein_coding;de
16	Chromosom	ne en	a gene	56	6764	57642	•	+	.	ID=gene:LOOC260_100520;Name=pepIP;biotype=protein_coding;de
17	Chromosom	ne en	a gene	158	3199	158909	•	-	.	ID=gene:LOOC260_101520;Name=ubiE;biotype=protein_coding;des
18	Chromosom	ie en	a gene	179	9616	180083		-		ID=gene:LOOC260_101730:Name=greA:biotype=protein_coding:des
-	uky	02	(+)							
:用花	== (

June 12, 2018

+ 100%

①wcでukyo2.txtの行数を確認。389行ですね。大分 365行に近づいてきました。このあとは、②のあたり に着目しながら、何か変なところがないかを調べる。 のスライド141で ろのものがあるの と眺めると…

ukyo2.txt

①早速同じ遺伝子名のものを発見!

	自動保存 💽 オフ) 📮	ا ک ا	¢~ ∓							ukyo2.txt - Excel	サインイン	<u> </u>		×
יידר	イル ホーム 挿	入 ペ	ージ レイアウト	数式	データ	校閲	表示		ן מ	実行したい作業を入力してください			论共](<u>S</u>)
X3	35 - :	×	f _x											~
	А	В	С		D	Е	F	G	Н		I. I.			
13	Chromosome	e ena	gene		38534	39670).	+		ID=gene:LOOC260_	100340;Name=argD;biotype	e=protein_co	ding;d	Э 🗌
14	Chromosome	e ena	gene		39675	40694	1.	+		ID=gene:LOOC260_	100350;Name=argF;biotype	=protein_co	ding;de	25
15	Chromosome	e ena	gene	1	54793	56562	2.	-		ID=gene:LOOC260_	100510;Name=horA;biotype	e=protein_co	ding;de	25
16	Chromosome	e ena	gene	1	56764	57642	2.	+		ID=gene:LOOC260_	100520;Name=pepIP;biotyp	pe=protein_c	oding;	
17	Chromosome	e ena	gene	1	58199	158909).	-		ID=gene:LOOC260_	101520;Name=ubiE;biotype	=protein_co	ding;de	25
18	Chromosome	e ena	gene	1	79616	180083	3.	-		ID=gene:LOOC260_	101730;Name=greA;biotype	=protein_co	ding;de	25
19	Chromosome	e ena	gene	19	94973	196004	1.	+		ID=gene:LOOC260_	101870;Name=IpIA;biotype	=protein_cod	ling;de	S
20	Chromosome	e ena	gene	19	99757	201103	3.	+		ID=gene:LOOC260_	101910;Name=trkH;biotype	=protein_co	ding;de	: <mark>S</mark>
21	Chromosome	e ena	gene	2	01126	201788	3.	+		ID=gene:LOOC260_	_101920;Name=trkA;bi <mark>/t</mark> ype	=protein_co	ding;de	s
22	Chromosome	e ena	gene	2	27737	228603	3.	+		ID=gene:LOOC260_	_102100;Name= <u>parB;</u> ype	e=protein_co	ding;de	Э
23	Chromosome	e ena	gene	2	28621	229388	3.	+		ID=gene:LOOC260_	_102110;Name=parA;b <mark>/It</mark> ype	e=protein_co	ding;de	3:
24	Chromosome	e ena	gene	2	29378	230259).	+		ID=gene:LOOC260_	_102120;Name= <u>parB;</u> ype	e=protein_co	ding;de	Э
25	Chromosome	e ena	gene	24	47127	248362	2.	+		ID=gene:LOOC260_	_102330;Name=gshA;b <mark>o</mark> type	e=protein_co	ding;d	е
26	Chromosome	e ena	gene	3	10153	310422	2.	+		ID=gene:LOOC260_	102950;Name=rpsN;biotype	e=protein_co	ding;de	Э
27	Chromosome	e ena	gene	3	58113	359453	3.	+		ID=gene:LOOC260_	103410;Name=gshR;biotyp	e=protein_co	ding;d	е
28	Chromosome	e ena	gene	3	93862	394773	3.	+		ID=gene:LOOC260_	103710;Name=cysK;biotype	e=protein_co	ding;de	Э
29	Chromosome	e ena	gene	3	94790	395929).	+		ID=gene:LOOC260_	103720;Name=metC;biotyp	e=protein_co	oding;d	e
30	Chromosome	ena	gene	3	991.36	399984	1	+		ID=gene I 00C260	103770·Name=purR·biotvp	e=protein_co	ding.de	ə] ≖
×# /#		۷	Ð										+ 100	P 06
-= V#	9/bJ												1 100	10

	①ここにも!。というわけで、残りは②のところ	の情報のみ抽出して
ukyo2.txt	無事365行になれば、QuasRを用いた遺伝子	いる レベルのカウントデ
自動保存 1 1 日 ち・ご・ = ファイル ホーム 挿入 ページレイアウト 数式 データ オ	ータは、そういう内部的な処理をしているとし 例えば、tRNAやrRNAのカウントデータは取 ²	いう理解につながる。 得していない、など。
X35 • : × ✓ fx		~
A B C D	E F G H	
145 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110170;Name=xseB;b	iotype=protein_coding;de
146 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110200;Name=argR;b	iotype=protein_coding;de
147 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110280;Name=rpoZ;b	iotype=protein_coding;de
148 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110360;Name=rpe;bic	type=protein_coding;desc
149 Chromosome ena gene 1E+06 1	1E+06 ID=gene:LOOC260_110380;Name=rpmB;	oiotype=protein_coding;de
150 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110420;Name=plsX;bi	otype=protein_coding;des
151 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110440;Name=rnc;bic	type=protein_coding;desc
152 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110490;Name=xpk;bic	type=protein_coding;des
153 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110510;Name=pntA;b	_type=protein_coding;de
154 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110520;Name=pntA;	Uype=protein_coding;de
155 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110530;Name=pntB;b	otype=protein_coding;de
156 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110540;Name=rpsP;b	iotype=protein_coding;de
157 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110560;Name=rimM;b	iotype=protein_coding;de
158 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110570;Name=trmD;b	iotype=protein_coding;de
159 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110580;Name=rplS;bi	otype=protein_coding;des
160 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110610;Name=lysA;bi	otype=protein_coding;des
161 Chromosome ena gene 1E+06 1	1E+06 . + . ID=gene:LOOC260_110620;Name=glpK;b	otype=protein_coding;des
162 Chromosome ena gene 1E+06 1 ukyo2 ↔	1F+06 - ID=gene·LOOC260_110680·Name=mvaD·	piotype=protein_coding:df ▼
準備完了		▣ □+ 100%

まずは、cutコマンドで特定の列の み取り出す。①は9列目なので…

			フト	**					み取り出す。①は9列目	なの	で …	
	Cut-	-		•								
	自動保存 💽 🎵 📮	∙ ج	¢~ ₹				ι	ıkyo2.txt - Excel	サインイン 配			\times
יד	イル ホーム 挿入	. ~	ージ レイアウト 数	対 データ	校問表	示	Ø j	ミ行したい作業を入力してください			必共	有(<u>S</u>)
XB	35 • :	~ `	Jx				_					
	А	В	С	D	Е	FG	Н		I			
45	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	170;Name=xseB;biotype=prote	ein_co	ding;d	е
46	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	200;Name=argR;biotype=prote	in_coc	ling;d	e
47	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	280;Name=rpoZ;biotype=prote	in_coc	ling;d	e
48	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	360;Name=rpe;biotype=protei	n_codi	ng;de	so
49	Chromosome	ena	gene	1E+06	1E+06			ID=gene:LOOC260_110	380;Name=rpmB;biotype=prot	ein_co	ding;a	le
50	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	420;Name=plsX;biotype=prote	in_cod	ling;d	es
51	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	440;Name=rnc;biotype=protei	ו_codi	ng;de	sc
52	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	490;Name=xpk;biotype=protei	n_codi	ng;de	s
53	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	510;Name=pntA;biotype=prote	in_coc	ling;d	e
54	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	520;Name=pntA;biotype=prote	in_coc	ling;d	e
55	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	530;Name=pntB;biotype=prote	in_co	ding;d	e
56	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	540;Name=rpsP;biotype=prote	in_coc	ling;d	e
57	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	560;Name=rimM;biotype=prot	ein_co	ding;c	le
58	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	570;Name=trmD;biotype=prote	ein_co	ding;d	e
59	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	580;Name=rplS;biotype=prote	n_cod	ing;de	s
60	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	610;Name=lysA;biotype=prote	in_cod	ing;de	es
61	Chromosome	ena	gene	1E+06	1E+06	. +		ID=gene:LOOC260_110	620;Name=glpK;biotype=prote	in_cod	ling;d	es
62	Chromosome	ena	gene	1F+06	1F+06	-		ID=gene 00C260_110	680·Name=mvaD·biotvpe=prot	<u>ein co</u>	ding	de -
4	ukyo2		(+)					: 		-		
準備	元了									-	-+ 10)%

①こんな感じで、②9列目の情報を取 り出した結果を、③ukyo3.txtに保存。

cutコマンド

ukyo3.txt	ずらずらと長いので、区切り文字を探す。①セミコロン; にすればよさそうだ。そうすると、分割後の②1番目の フィールド、③2番目のフィールド、④3番目のフィール ドみたいになるので、2番目のフィールドを抽出する。
ファイル ホーム 挿入 ページレイアウト 数式 データ 校閲 表示 🔎 実	行したい作業を入力してください (2) 共有(<u>S</u>)
AC35 \checkmark : $\times \checkmark f_{\star}$	× B C A
1ID=gene:LOOC260_100010;Name=dnaA;biotype=protei2ID=gene:LOOC260_100020;Name=dnaA;biotype=protei3ID=gene:LOOC260_100040;Name=recF;biotype=proteir4ID=gene:LOOC260_100060;Name=gyrB;biotype=proteir5ID=gene:LOOC260_100080;Name=gyrA;biotype=proteir6ID=gene:LOOC260_100100;Name=rpsF;biotype=proteir7ID=gene:LOOC260_100290;Name=carB;biotype=proteir8ID=gene:LOOC260_100300;Name=carA;biotype=proteir9ID=gene:LOOC260_100300;Name=argC;biotype=proteir10ID=gene:LOOC260_10030;Name=argB;biotype=proteir11ID=gene:LOOC260_10030;Name=argB;biotype=proteir12ID=gene:LOOC260_10030;Name=argB;biotype=proteir13ID=gene:LOOC260_10030;Name=argB;biotype=proteir14ID=gene:LOOC260_100350;Name=argF;biotype=proteir15ID=gene:LOOC260_100510;Name=argF;biotype=proteir16ID=gene:LOOC260_100520;Name=argF;biotype=proteir17ID=gene:LOOC260_100520;Name=pepIP;biotype=proteir17ID=gene:LOOC260_100520;Name=ubiE;biotype=proteir	n_coding;description=chromosomal replication initiation protein Dn in_coding;description=DNA polymerase III subunit beta;gene_id=LC n_coding;description=DNA replication and repair protein RecF;gene n_coding;description=DNA gyrase subunit B;gene_id=LOOC260_100 n_coding;description=30S ribosomal protein S6;gene_id=LOOC260_ n_coding;description=30S ribosomal protein S18;gene_id=LOOC260_ n_coding;description=carbamoyl-phosphate synthase large subunit; n_coding;description=Carbamoyl-phosphate synthase large subunit; n_coding;description=N-acetyl-gamma-glutamyl-phosphate reducta n_coding;description=Acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=acetylglutamate kinase;gene_id=LOOC260_10 n_coding;description=multidrug transporter HorA homolog;gene_id= in_coding;description=proline iminopeptidase;gene_id=LOOC260_11 n_coding;description=ubiquinone/menaquinone biosynthesis methy
ukyo3 +	Coding description=transcription elongation factor Greatgene Id≡
準備元了	

awkコマンド

①awk(オーク)コマンドを用いて、②ukyo3.txtに対して、③きを区切り文字として分割後、④2番目のフィールドを抽出した結果を⑤ukyo4.txtに保存している。

かなりスッキリしました。ソート(sort) すれば、さらに見やすくなります。

ukyo4.txt

E	自動保存 💽 オフ		€ - ⊘ - :	Ŧ				ukyo4.txt -	Excel				サインイン	ħ	- 0	×	
ידר	イル ホーム	挿入	ページレイス	アウト 数式	℃ データ	校閲	表示の	実行したい作業	を入力してくださ	ξL1					Ŕ	共有(<u></u>	<u>5)</u>
02	•7 •	: ×	√ f _x														¥
	Δ		P	C	D	F	E	C	ш		1	IZ.		M	N		
1	A Nomo d	n o (Б	C	U	E	F	G	п		J	n	L	IVI	IN		
1	Name=d	naA															
2	Name=d	naiv															
3	Name=re	ec⊦															
4	Name=g	yrB															
5	Name=g	yrA															
6	Name=r	psF															
7	Name=r	psR															
8	Name=c	arB															
9	Name=c	arA															
10	Name=a	rgC															
11	Name=a	rgJ															
12	Name=a	rgB															
13	Name=a	rgD															
14	Name=a	rgF															
15	Name=h	orA															
16	Name=p	epIP															
17	Name=u	biE															
18	Name=ø	reA															Ŧ
	C → 1	ukyo4	+													►	
準備	。 完了											=			+	100%	

今取り扱っているukyo4.txtの、①最 初の4行分を表示。②389行です。

状況の整理

@bielin	ux[~/Desktop/mac_share/mapping_kiso3] 1	📭 Ja 📧 🜒 14	:19 🔱
	iu@bielinux[mapping_kiso3] pwd /home/iu/Desktop/mac_share/mapping_kiso3	[2:19午	後]
	iu@bielinux[mapping_kiso3] ls	[2:19午	後]
-	Lactobacillus_hokkaidonensis_jcm_18461.GCA_000	829395.1.30.0	hrom
	uge.txt		
9	ukyo2.txt		
	iu@bielinux[mapping kiso3] cut -f 9 ukyo2.txt	<pre>> ukyo3.txt</pre>	
	<pre>iu@bielinux[mapping_kiso3] awk -F';' '{print \$ print \$</pre>	2}' ukyo3.txt	: > u
	iu@bielinux[mapping kiso3] head -n 4 ukyo4.txt	[2:19午	後]
	Name=dnaA		64. 201 0 . A
	vame=dnav Vame=recF		
	Name=gyrB		14 3
	10@bielinux[mapping_kiso3] wc ukyo4.txt 389 389 3862 ukvo4.txt	[2:194	役」
	iu@bielinux[mapping_kiso3]	[2:19午	後]
-			12

iu

①パイプで連結しまくって一行で書くとこんな感じになり ます。②GFF3ファイルを入力として、③最終的に365行 という結果がちゃんと得られていることがわかります。

·行で書くと..

他のやり方

①受講生の長部高之さん提供コード。このコードをベースとすることで、QuasRの挙動の理解につながりました。

@biel	inux[~/Desktop/mac_share/mapping_kiso3]	Ja 📧 🜒) 14:44 😃
	<pre>iu@bielinux[mapping_kiso3] pwd</pre>	[2:34午後]
Q.	<pre>/home/iu/Desktop/mac_share/mapping_kiso3</pre>	
	<pre>iu@bielinux[mapping_kiso3] ls</pre>	[2:34午後]
	Lactobacillus_hokkaidonensis_jcm_18461.GCA_000829	395.1.30.chrom
	osome.Chromosome.gff3	
	uge.txt	
9	ukyo2.txt	
	ukyo3.txt	
	ukyo4.txt	
\sum	ukyo5.txt	
1	UKYO, TXT	1
	lu@pletinux[mapping_kiso3] grep "ID=gene" *.gtt3	grep "Name="
	grep -v (RNA_gene grep -v (RNA_gene cu	1L - 1 9 dwk -
E	$7; {print $2} Sort - u wc$	
	iu@bielinux[mapping_kiso3] cat * aff3 arep_v	14" awk 143
	$\sim /\text{gene}/\{\text{print $9}\}' \mid \text{awk -}E' \cdot ' \cdot \text{$2} \sim /\text{Name} = /\{\text{print $9}\}' \mid \text{awk -}E' \cdot \cdot \cdot \text{$2} \sim /\text{Name} = /\{\text{print $100}\}$	int \$2}' aren
- 1	-v '100C' 1 sort -u 1 wc	
2	365 365 3628	
0	iu@bielinux[mapping_kiso3]	[2:43午後]
	Treate cruck [mobbild_vises]	

iu

①gff3ファイルの中身をパイプで渡し、②#から始まる行を除き…

③第3フィールド(3列目のこと)に、④gene を含む行の、⑤第9フィールドを抽出。この あたりは非常に美しい記述ですね。

	兑明	を含む行の、⑤第あたりは非常に美
iu@biel	inux[~/Desktop/mac_share/mapping_kiso3] 🔹	Ja 📧 🗤) 14:44 🔱
	<pre>iu@bielinux[mapping_kiso3] pwd</pre>	[2:34午後]
Q	/home/iu/Desktop/mac_share/mapping_kiso3	
	iu@bielinux[mapping_kiso3] ls	[2:34午後]
	Lactobacillus_hokkaidonensis_jcm_18461.GCA_00082	9395.1.30.chrom
	osome. Chromosome. gtt3	
	uge.txt	
9	ukyo3.txt	
	ukvo4.txt	
X	ukyo5.txt	
	ukyo.txt	
	<pre>iu@bielinux[mapping_kiso3] grep "ID=gene" *.gff3</pre>	grep "Name="
	grep -v "tRNA_gene" grep -v "rRNA_gene" c	ut -f 9 awk -
(HER)	F';' '{print \$2}' sort -u wc	
E	365 365 3628	
	<pre>lu@bletinux[mapping_kiso3] cat *.gtt3 grep -v (gene/(print f0)) out Elit f2 (Nome_/(print f0))</pre>	awk \$3
2-1	\sim /gene/{print \$9} dwk -r; \$2 ~ /Ndme=/{pr	IIIC \$25 giep
	305 365 3628	
	iu@bielinux[mapping kiso3]	[2:43午後]
	·····································	

⑥区切り文字を;として分割し、⑦分割後の第2フィールドに、⑧Name=を含むもののみ、⑨その第2フィールドを抽出。ここまででName=がないものは振り落とされる。

	兑明	ドに、 ⑧Name=を 抽出。 ここまでで	<mark>含むもののみ</mark> Name=がない
u@biel	inux[~/Desktop/mac_share/mapping_kiso3]	tų Ja 🗉	💌 🜒) 14:44 🔱
	<pre>iu@bielinux[mapping_kiso3] pwd</pre>	[2:34午後]
Q	/home/iu/Desktop/mac_share/mapping_	kiso3	
	iu@bielinux[mapping_kiso3] ls]	2:34午後]
	Lactobacillus_hokkaidonensis_jcm_184	161.GCA_000829395	.1.30.chrom
	osome. Chromosome. gtts		
	ukvo2 tyt		
9	ukvo3.txt		
	ukyo4.txt		
X	ukyo5.txt		
	ukyo.txt		
	<pre>iu@bielinux[mapping_kiso3] grep "ID=</pre>	=gene" *.gff3 g	rep "Name="
	grep -v "tRNA_gene" grep -v "r	RNA_gene" cut -	f 9 awk -
=	F';' '{print \$2}' sort -u wc		
ED.	305 305 3028	EZ L aron V 10#1	Louk 100
	$\sim /\text{gene}/\{\text{print $9}\} = \text{awk -}F' \cdot \cdot$	~ /Name=/{print	\$2}' gren
	-v 'LOOC' sort -u wc		
7	365 365 3628		
0	<pre>iu@bielinux[mapping kiso3]</pre>	[2:43午後]
1 State			

i

①LOOC(tRNA_geneやrRNA_geneに相当)を含まないもののみ抽出して、①重複除去後に行数をカウント

	Й АВ	ののみ抽出して、⑪重複除去
	ルック	
u@biel	inux[~/Desktop/mac_share/mapping_kiso3]	T Į Ja ♠)) 14:44 ₹∰
6	iu@bielinux[mapping_kiso3] pwd	[2:34午後]
0	/nome/lu/Desktop/mac_share/mapping_l	(1503
	lu@pletinux[mapping_kiso3] ts	[2:34 代]
	Lactobacillus nokkaidonensis_jcm_184	401.GCA_000829395.1.30.Chrom
	uso tyt	
	uge, LAL	
9	ukyoz tyt	
	ukyo4 txt	
S	ukvo5.txt	
	ukvo.txt	
	iu@bielinux[mapping kiso3] grep "ID=	=gene" *.gff3 grep "Name="
	grep -v "tRNA gene" grep -v "r	RNA gene" cut -f 9 awk -
	F';' '{print \$2}' sort -u wc	
围	365 365 3628	
	<pre>iu@bielinux[mapping kiso3] cat *.gf</pre>	f3 grep -v '^#' awk '\$3
	~ /gene/{print \$9}' awk -F';' '\$2	~ /Name=/{print \$2}' grep
	<u>-v 'LOOC' sort -u wc</u>	
6	365 11628	
Sec. 1	iu@bietinux[mapping_kiso3]	[2:43午後]
-		

i

①のsingle-endでアノテーション有の、②例題10の 実行結果として、365遺伝子のカウントデータしか得 おさらい られなかった。機能ゲノム学第4回のスライド82-99 (Rで)塩基配列解析 (last modified 2018/05/30, since 2010) • マップ後 | 出力ファイルの読み込み | htSeqTools(Planet 2012) (last modified 2013/06/19) このウェブベー マップ後 | カウント情報取得 | について (last modified 2018/05/30) NEW フリーソフトRと マッブ後 | カウント 情報取得 | single-end | ゲノム | アノテーション有 | QuasR(Gaidatzis 2015) modified 2018/05/29) (Windows2015 • マップ後 | カウント 情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders 2015) (last modified 2018/05/30) (2015/04/03) マップ後 | カウント 情報取得 | single-end | ゲノム | アノテーション 無 | QuasR(Gaidatzis 2015) (last modified 2018/05/26) マップ後日本ロン マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | QuasR • マップ後 What's new? • マップ後 (Gaidatzis 2015) NEW •「マップ後」¹• マップ後 ・「イントローフ・マップ後QuasRバッケージを用いたsingle-end RNA-seqデータのリファレンスゲノム配列へのBowtieによるマッピングから、カウントデータ •「H29年度N • 正規化」取得までの一連の流れを示します。アノテージョン情報は、GenomicFeatures バッケージ中の関数を利用してTxDbオブジェクトを ・正規化||ネットワーク経由で取得するのを基本としつつ、TxDbバッケージを読み込むやり方も示しています。マッピングのやり方やオブ ----(広田)」OwerP(Califateria 2015)たどなみ来口 ・ 正規化Ⅰ^{ション} 10.mapping single genome7.txt中のFASTA形式ファイルを乳酸菌ゲノムにマッピングする場合: 正規化 「ファイ」 マップする側のファイルは、サンプルデータ47のFASTA形式ファイル(sample RNAseq4.fa)です。 マップされる側のファイル • 正規化| は、Ensembl (Zerbino et al., Nucleic Acids Res., 2018)から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲノム 正規化 合: 配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。マッビ ング結果に対して、GFF3形式のアノテーションファイル mapping (Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3)を読み込んでカウント情報 日の2列目 を取得しています。 --best --str して、UC in f1 <- "mapping single genome7.txt" #入力ファイル名を指定してin f1に格納(RNA-seqファイル) in f2 <- "Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome in f1 in f3 <- "Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff in f2 4 #出力ファイル名を指定してout flc格納 out f <- "hoge10.txt" out f < out_t <- "hoge10.txt" param_reportlevel <- "gene"</pre> #カウントデータ取得時のレベルを指定:"gene", "exon", "prod param n #必要なバッケージをロード #バッケージの読み込み library(QuasR) library(GenomicFeatures) #バッケージの読み込み

ファイル

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

HTSeq

Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.

HTSeq--a Python framework to work with high-throughput sequencing data

Anders S1, Pyl PT1, Huber W1

Author information

Abstract

MOTIVATION: A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed.

RESULTS: We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data, such a genomic coordinates, sequences, sequencing reads, alignments, gene model information and variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes.

AVAILABILITY AND IMPLEMENTATION: HTSeq is released as an open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index at https://pypi.python.org/pypi/HTSeq.

© The Author 2014. Published by Oxford University Press.

PMID: 25260700 PMCID: PMC4287950 DOI: 10.1093/bioinformatics/btu638

[Indexed for MEDLINE] Free PMC Article

Images from this publication.	See all images (2)	Free text	6
M BO 14400001942144			

See Adjunct and Descentification	 So of the second second			
mate core mate core patients dependence		0 00 0 00 000	0> 0	
state dring state of state dringstormularity	THE THE INT THE THE THE SILE OWN THE THE M IN THE CAR THE THE			
Ages to of Operfurnation appendix , free finites	H 3 3-8 ct 33-15 1 3 5-1 ct 10-15 H 1 1-1 ct 10-15			

 ①HTSeqlは、2015年の出版以降②PubMedのみで 2,000回以上引用されている有名なPythonで書か れたプログラム。ここでは、HTSeqlに含まれる③ htseq-countを利用してカウント情報の取得を行う。

1	Save items
	☆ Add to Favorites
	Similar articles
F	Rcount: simple and flexible RNA-Seq ead counting. [Bioinformatics. 201
f	Mics Pipe: a community-based ramework for re [Bioinformatics. 201
2	TSSV: a tool for characterization of complex allelic v [Bioinformatics. 201
	Review Toward better understanding of artifacts in var [Bioinformatics. 201
a	Review Bioinformatics tools for analysing viral ge [Rev Sci Tech. 2010
	See reviews
	See all
0	Cited by over 100 PubMed
l S	ntron retention and nuclear loss of SFPQ are molect [Nat Commun. 201
ł	Franscriptome analysis of the adult numan Klinefelt∉[Cell Death Dis. 201
	Pegulation Mechanism Mediated by

June 12, 2018

HTSeq(Anders et al., Bioinformatics, **31**: 166-9, 2015)
1.

http://htseq.readthedocs.io/en/release 0.10.0/

37

①HTSeqのページ。②ページ下部に移動 HTSeq 講義日程(平成30年度) 平成30年06月12日 (PC使用) \times 講義資料PDF 슈 숫 땷 🥲 http://htseq.readthedocs.io/en/release_0.10.0/ ρ-- C 検索... QuasR : Gaidatzis et al., Bioinfo 🔢 HTSeq: Analysing high-thro... × HTSeq : Anders et al., Bioinfor HTSeq 0.10.0 documentation » next | index HTSeq: Analysing high-throughput sequencing Next topic HTSeq: Analysing highdata with Python throughput sequencing data with Python Overview This Page Paper Show Source Documentation overview Author Quick search License Go · Prequisites and installation Installation on Linux Installation on MacOS X MS Windows A tour through HTSeq · Reading in reads Reading and writing BAM files · Genomic intervals and genomic arrays · Counting reads by genes And much more A detailed use case: TSS plots Using the full coverage Using indexed BAM files · Streaming through all reads · Counting reads Preparing the feature array v: release 0.10.0 -Counting unganged single-end reads

①このあたり。②htseq-count

HTSeq 講義日程 (平成30年度) 1. 平成30年06月12日 (PC使用) \times 講義資料PDF 슈 ☆ 🏵 🙂 http://htseq.readthedocs.io/en/release_0.10.0/ - ¢ 検索... , م QuasR : Gaidatzis et al., Bioinfo 🔢 HTSeq: Analysing high-thro... × HTSeq : Anders et al., Bioinforr Multiple alignments CIGAR strings Features • GFF Reader and GenomicFeature · Other parsers • VCF Reader and VariantCall Wiggle Reader BED Reader Miscellaneous • FileOrSequence Version Quality Assessment with htseq-qa Plot Usage Counting reads in features with htseq-count Usage Version history Version 0.10.0 Version 0.9.1 Version 0.9.0 Version 0.8.0 Version 0.7.2 Version 0.7.1 Version 0.7.0 Version 0.6.1 Version 0.6.0 v: release 0.10.0 - Version 0.5.4 Version 0.5.3 Version 0.5.2 38 June 12, 2018

htseq-count

Go

 ①htseq-countのページ。ここでは、htseqcountが提供する②3つのカウントモードや、ど のようにオプションを使いこなして自分の欲し いカウントデータを得るのかについて解説。

Counting reads in features ... ×

HTSeq 0.10.0 documentation »

Table Of Contents

Counting reads in features with htseq-count

- Usage
- Options
- Frequenctly asked questions

Previous topic

Quality Assessment with htseq-qa

Next topic

Version history

This Page

Show Source

Quick search

http://htseq.readthedocs.io/en/release_0.10.0/count.html

▼ ♂ 検索...

previous | next | index

Counting reads in features with htseq-

Given a file with aligned sequencing reads and a list of genomic features, a common task is to count how many reads map to each feature.

A feature is here an interval (i.e., a range of positions) on a chromosome or a union of such intervals.

In the case of RNA-Seq, the features are typically genes, where each gene is considered here as the union of all its exons. One may also consider each exon as a feature, e.g., in order to check for alternative splicing. For comparative ChIP-Seq, the features might be binding region from a pre-determined list.

Special care must be taken to decide how to deal with reads that align to or overlap with more than one feature. The htseq-count script allows to choose between three modes. Of course, if none of these fits your needs, you can write your own script with HTSeq. See the chapter A tour through HTSeq for a step-by-step guide on how to do so. See also the FAQ at the end, if the following explanation seems too technical.

The three overlap resolution modes of htseq-count work as follows. For each position *i* in the read, a set S(i) is defined as the set of all features overlapping position *i*. Then, consider the set S, which is (with *i* running through all position within the read or a read pair)

- the union of all the sets *S(i)* for mode <u>union</u>. This mode is recommended for most use cases.
- the intersection of all the sets S(i) for mode intersection-strict.

3つのカウントモード

①ちょっと下に移動。②3つのカウントモード に関する説明。赤下線部分が指定するオプ ション名で、③unionが推奨のようだ。この段 階でデフォルトはunionだと判断する。

http://htseq.readthedocs.io/en/release_0.10.0/count.html

検索...

Counting reads in features ... ×

Go

Of course, if none of these fits your needs, you can write your own script with HTSeq. See the chapter A tour through HTSeq for a step-by-step guide on how to do so. See also the FAQ at the end, if the following explanation seems too technical.

The three overlap resolution modes of htseq-count work as follows. For each position *i* in the read, a set S(i) is defined as the set of all features overlapping position *i*. Then, consider the set S, which is (with *i* running through all position within the read or a read pair)

- the union of all the sets S(i) for mode <u>union</u>. This mode is recommended for most use cases.
- the intersection of all the sets S(i) for mode intersection-strict.
- the intersection of all non-empty sets S(i) for mode intersection-nonempty.

If S contains precisely one feature, the read (or read pair) is counted for this feature. If S is empty, the read (or read pair) is counted as no_feature. If S contains more than one feature, htseq-count behaves differently based on the --nonunique option:

- --nonunique none (default): the read (or read pair) is counted as ambiguous and not counted for any features. Also, if the read (or read pair) aligns to more than one location in the reference, it is scored as alignment_not_unique.
- --nonunique all: the read (or read pair) is counted as ambiguous and is also counted in all features to which it was assigned. Also, if the read (or read pair) aligns to more than one location in the reference, it is scored as alignment_not_unique and also separately for each location.

Notice that when using <u>--nonunique</u> all the sum of all counts will be be availed to number of reads (or read pairs), because those with multiple alignress.

①ちょっと下に移動。リードがgene_A上にマップされたと判断 する基準について、どのモードを選択するとどう判定される かが示されている。例えば、②unionと③intersection_strict 間では、④の状況のときに異なる結果になる。

(10.0/count.html)

モード間の違い

🔢 Counting reads in features ... 🗡

QuasRとの違い

The following figure illustrates the effe

http://htseq.readthedocs.io/en/release_0.10.0/count.html

Counting reads in features ... ×

①はgene_Aの領域にリードの一部がマップされている状況です。
 ②デフォルトのunionモードではリードをカウントするが、
 ③intersection_strictモードではカウントしないということです。
 QuasRのデフォルトはカウントしない、でしたね。
 (開発された時期の違いの影響ももちろんありますが)プログラム開発者の思想の違いがわかる例です。

and a second			
option:		-3-	
	union	intersection _strict	intersection _nonempty
read gene_A	gene_A	gene_A	gene_A
gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
gene_A gene_A	gene_A	gene_A	gene_A
gene_A gene_B	gene_A	gene_A	gene_A
gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A
gene_A	(both gene	ambiguous es withnonun	v. release_0.10.0 ique all)

おさらい	①hoge.10.txt く、②行数とダ ップされたリー	の中身。ヘッダー(行名 列数は365と2。②全365〕 ードの総数(カウント総数	や列名)部 遺伝子の行 ()は、③2	^{II} 分を除 <u></u> 頃域にマ でした。
RGui (64-bit)	– 🗆 ×			
ファイル 編集 閲覧 その他 バッケージ ワイントワ ヘルフ				
			40.4	
R Console			noge10.tx	<u>Kt</u>
> dim(count)			width	Lacto
$ \begin{array}{c} [1] 365 & 2 \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \end{array} \\ \end{array}$		accA	750	0
width Lacto		accB	369	0
accA 750 0		accC	1347	0
accC 1347 0		accD	789	0
accD 789 0		ackA	1191	0
ackA 1191 0		acne	363	0
> head(count[,2])		acps	0711	0
accA accB accC accD ackA acpS		addA	3/11	0
		adh	1056	0
<pre>> Sum(count[,2]) [1] 2</pre>		adhE	2607	0
>		adk	660	0
<	×	alaS	2655	0
		aldA	1464	0
		aldB	714	0

0

amt

1323

##gff-version	3								
##sequence-	##sequence-region Chromosome 360 2277853								
#!genome-build European Nucleotide Archive ASM82939									
#!genome−ver	rsion	GCA_00082	29395.1						
#!genome-dat	e 201	4-11							
#!genome-bui	ld–ac	cession GC	A_000	82939	5.1				
#!genebuild—la	st-up	dated 2014	1-11						
Chromosome	ena	gene	360	1676		+		D=ge	
Chromosome	ena	transcript	360	1676		+		ID=tr	
Chromosome	ena	exon	360	1676		+		Pare	
Chromosome	ena	CDS	360	1676		+	0	ID=C	
###									
Chromosome	ena	gene	1852	2991		+		D=ge	
Chromosome	ena	transcript	1852	2991		+		ID=tr	
Chromosome	ena	exon	1852	2991		+		Pare	
Chromosome	ena	CDS	1852	2991		+	0	ID=C	
###									
Chromosome	ena	gene	3233	3457		+		D=ge	
Chromosome	ena	transcript	3233	3457		+		ID=tr	
Chromosome	ena	exon	3233	3457		+		Pare	
Chromosome	ena	CDS	3233	3457		+	0	ID=C	
###									
Chromosome	ena	gene	3467	4588		+	K(B	D=ge	

①マップする側(sample_RNAseq4.fa)の計
 11リードは、②アノテーションファイル(.gff3)
)中の③gene領域を参考にしながら作成。
 全て完全一致でマップされるように設計。

Chromosome 361 400 TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC >Chromosome_1637 1676 AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG >Chromosome 1851 1890 CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA >Chromosome 1843 1882 TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA >Chromosome 1833 1872 CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT >Chromosome 1823 1862 CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC >Chromosome 1813 1852 AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA >Chromosome 3418 3457 GATTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAG >Chromosome 3420 3459 TTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGC >Chromosome 3422 3461 GCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGCAA >Chromosome 3443 3482 ATTCAAAATGAGTAGGCAACTTAAATGATTTTAAAAAGAAC

①最初の2リードは、②の領域内にマップされるよう に設計。これがQuasRのカウント総数2に相当する。

##gff-version	3							
##sequence-region Chromosome 360 2277853								
#!genome-build European Nucleotide Archive ASM8293								8293
#!genome-ver	rsion	GCA_00082	29395.1					
#!genome-dat	e 201	4-11						
#!genome-bui	ld–ac	cession GC	A_000	82939!	5.1			
#!genebuild-la	ist-up	dated 2014	4-11					
Chromosome	ena	gene	360	1676				ID=g
Chromosome	ena	transcript	360	1676		+		ID=tr
Chromosome	ena	exon	360	1676		+		Pare
Chromosome	ena	CDS	360	1676		+	0	ID=C
###								
Chromosome	ena	gene	1852	2991		+		ID=g
Chromosome	ena	transcript	1852	2991		+		ID=tr
Chromosome	ena	exon	1852	2991		+		Pare
Chromosome	ena	CDS	1852	2991		+	0	ID=C
###								
Chromosome	ena	gene	3233	3457		+		ID=g
Chromosome	ena	transcript	3233	3457		+		ID=tr
Chromosome	ena	exon	3233	3457		+		Pare
Chromosome	ena	CDS	3233	3457		+	0	ID=C
###								
Chromosome	ena	gene	3467	4588		+		ID=g

①3-7番目の5リードは、②の領域に一部がかかる ように設計。領域内ではないため、QuasRではカウ ントされないが、HTSeqではカウントされると予想。

##gπ−version	3								
##sequence-	regior	n Chromos	some 3	360 22	77	85	3		
#!genome-bui	ld Eur	ropean Nuc	leotide	Archi	ve	A	SM	82939	
#!genome-ver	sion (GCA_00082	9395.1						
#!genome-date 2014-11									
#!genome-bui	ld-ac	cession GC	A_000	82939!	5.1				
#!genebuild-la	st-up	dated 2014	1-11						
Chromosome	ena	gene	360	1676		+		ID=ge	
Chromosome	ena	transcript	360	1676		+		ID=tr	
Chromosome	ena	exon	360	1676		+		Pare	
Chromosome	ena	CDS	360	1676		+	0	ID=C	
###									
Chromosome	ena	gene	1852	2991				ID=ge	
Chromosome	ena	transcript	1852	2991		+		ID=tr	
Chromosome	ena	exon	1852	2991		+		Pare	
Chromosome	ena	CDS	1852	2991		+	0	ID=C	
###									
Chromosome	ena	gene	3233	3457		+		ID=ge	
Chromosome	ena	transcript	3233	3457		+		ID=tr	
Chromosome	ena	exon	3233	3457		+		Pare	
Chromosome	ena	CDS	3233	3457		+	0	ID=C	
###									
Chromosome	ena	gene	3467	458 <u>8</u>		+		ID=ge	

>Chromosome 361 400 TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC >Chromosome_1637 1676 AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG >Chromosome 1851 1890 CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA >Chromosome 1843 1882 TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA >Chromosome 1833 1872 CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT >Chromosome 1823 1862 CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC >Chromosome 1813 1852 AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA >Chromosome 3418 3457 GATTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAG >Chromosome 3420 3459 TTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGC >Chromosome 3422 3461 GCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGCAA >Chromosome 3443 3482 ATTCAAAATGAGTAGGCAACTTAAATGATTTTAAAAGAAC

##gff-version	3							
##sequence-	regior	n Chromo	some 3	360 22	77	85	3	
#!genome-bui	ld Eui	ropean Nuc	leotide	Archi	ve	AS	SM	82939
#!genome-ver	rsion	GCA_00082	9395.1					
#!genome-dat	e 201	4-11						
#!genome-bui	ld–ac	cession GC	A_000	82939!	5.1			
#!genebuild-la	ist-up	dated 2014	1-11					
Chromosome	ena	gene	360	1676		+		ID=ge
Chromosome	ena	transcript	360	1676		+		ID=tr
Chromosome	ena	exon	360	1676		+		Pare
Chromosome	ena	CDS	360	1676		+	0	ID=C
###								
Chromosome	ena	gene	1852	2991		+		ID=ge
Chromosome	ena	transcript	1852	2991		+		ID=tr
Chromosome	ena	exon	1852	2991		+		Pare
Chromosome	ena	CDS	1852	2991		+	0	ID=C
###								
Chromosome	ena	gene	3233	3457				ID=ge
Chromosome	ena	transcript	3233	3457		+		ID=tr
Chromosome	ena	exon	3233	3457		+		Pare
Chromosome	ena	CDS	3233	3457		+	0	ID=C
###								
Chromosome	ena	gene	3467	4588		+		ID=ge

①8番目のリードは、②の領域内にマップされるように 設計。QuasRではgenenameがなかったため、計365 遺伝子からなるカウントデータには反映されなかった 。HTSeqではどのような取り扱いになるのだろう?

	>Chromosome_361_400
	TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC
	>Chromosome_1637_1676
	AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG
	>Chromosome_1851_1890
	CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA
	>Chromosome_1843_1882
	TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA
	>Chromosome_1833_1872
	CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT
	>Chromosome_1823_1862
	CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC
	>Chromosome_1813_1852
	AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA
	>Chromosome_3418_3457
1	GATTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAG
	>Chromosome_3420_3459
	TTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGC
	>Chromosome_3422_3461
	GCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGCAA
	>Chromosome_3443_3482
	ATTCAAAATGAGTAGGCAACTTAAATGATTTTAAAAGAAC

						_	_	
##gff-version	3							
##sequence-	##sequence-region Chromosome 360 22778						3	
#!genome-bui	ld Eur	ropean Nuc	leotide	Archi	ve	AS	SΜ	82939
#!genome-ver	rsion	GCA_00082	29395.1					
#!genome-dat	e 201	4-11						
#!genome-bui	ld–ac	cession GC	A_000	82939	5.1			
#!genebuild-la	st-up	dated 2014	4-11					
Chromosome	ena	gene	360	1676		+		ID=ge
Chromosome	ena	transcript	360	1676		+		ID=tr
Chromosome	ena	exon	360	1676		+		Pare
Chromosome	ena	CDS	360	1676		+	0	ID=C
###								
Chromosome	ena	gene	1852	2991		+		ID=ge
Chromosome	ena	transcript	1852	2991		+		ID=tr
Chromosome	ena	exon	1852	2991		+		Pare
Chromosome	ena	CDS	1852	2991		+	0	ID=C
###								
Chromosome	ena	gene	3233	3457				ID=ge
Chromosome	ena	transcript	3233	3457		+		ID=tr
Chromosome	ena	exon	3233	3457		+		Pare
Chromosome	ena	CDS	3233	3457		+	0	ID=C
###								
Chromosome	ena	gene	3467	4588		+		ID=ge

①9-10番目のリードは、②の領域に一部がかかるように設計。領域内ではない。QuasRではgenenameがなかったため、計365遺伝子からなるカウントデータには反映されなかった。HTSeqで取り扱われるのであれば、この2リードもカウントされるだろうと予想。

>Chromosome_361_400
TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC
>Chromosome_1637_1676
AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG
>Chromosome_1851_1890
CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA
>Chromosome_1843_1882
TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA
>Chromosome_1833_1872
CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT
>Chromosome_1823_1862
CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC
>Chromosome_1813_1852
AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA
>Chromosome_3418_3457
GATIGCAGATAAIGGGACATIIGICATICAAAAIGAGIAG
>Chromosome_3420_3459
I I GCAGA I AA I GGGACA I I I G I CA I I CAAAA I GAG I AGGC
>Chromosome_3422_3461
GUAGATAATGGGAUATTIGTUATTUAAAATGAGTAGGUAA
>Uhromosome_3443_3482
ATTUAAAATGAGTAGGUAAUTTAAATGATTITAAAAGAAU

##gff-version	3							
##sequence-region Chromosome 360 22778						85(3	
#!genome-bui	#!genome-build European Nucleotide Archive ASM8293						82939	
#!genome-ver	rsion (GCA_00082	29395.1					
#!genome-dat	e 201	4-11						
#!genome-bui	ld-ac	cession GC	A_000	82939	5.1			
#!genebuild-la	st-up	dated 2014	4-11					
Chromosome	ena	gene	360	1676		+		ID=ge
Chromosome	ena	transcript	360	1676		+		ID=tr
Chromosome	ena	exon	360	1676		+		Pare
Chromosome	ena	CDS	360	1676		+	0	ID=C
###								
Chromosome	ena	gene	1852	2991		+		ID=ge
Chromosome	ena	transcript	1852	2991		+		ID=tr
Chromosome	ena	exon	1852	2991		+		Pare
Chromosome	ena	CDS	1852	2991		+	0	ID=C
###								
Chromosome	ena	gene	3233	3457				ID=ge
Chromosome	ena	transcript	3233	3457		+		ID=tr
Chromosome	ena	exon	3233	3457		+		Pare
Chromosome	ena	CDS	3233	3457		+	0	ID=C
###								
Chromosome	ena	gene	3467	4588		3)-		ID=ge

①11番目のリードは、②と③の領域にまたがって マップされるように設計。HTSeq(のデフォルトで あるunionモード)では、ambiguousとなるであろう。

	>Chromosome_361_400
	TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC
	>Chromosome_1637_1676
	AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG
	>Chromosome_1851_1890
	CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA
	>Chromosome_1843_1882
	TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA
	>Chromosome_1833_1872
	CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT
	>Chromosome_1823_1862
	CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC
	>Chromosome_1813_1852
	AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA
	>Chromosome_3418_3457
	GATTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAG
	>Chromosome_3420_3459
	TTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGC
	>Chromosome_3422_3461
	GCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGCAA
,	>Chromosome_3443_3482
	ATTCAAAATGAGTAGGCAACTTAAATGATTTTAAAAGAAC

HTSeq(のデフォルトである①unionモード)では、②複数の 領域にまたがってマップされるリードは、ambiguousとなる。

ambiguous

http://htseq.readthedocs.io/e	en/release_0.10.0/count.html	▼ ♂ 検索			×
Counting reads in features ×	The following figure illustrates the option:	effect of these three	e modes and t	henonunique	^
		union	intersection _strict	intersection _nonempty	ļ
	gene_A	gene_A	gene_A	gene_A	
	read gene_A	gene_A	no_feature	gene_A	
	gene_A gene_A	gene_A	no_feature	gene_A	
	gene_A gene_A	gene_A	gene_A	gene_A	
	read gene_A gene_B	gene_A	gene_A	gene_A	
	gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A	
	gene_A gene_B	(both gene	ambiguous s withnonun	v: release_0.10.0 🗸 ique all)	~

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

[options]はなくてもよい

① [options]は、文字通りオプションなので、実行時になくてもよいものです。

	o/en/release 0.10.0/count.html	▼ 戊 検索	× □ − ∞∽∞∽∞		
Counting reads in features ×		12.7			
				~	
	read ? gene_A gene_B	alignment_not (both genes withn	_unique ionunique all)		
	Usage				
	After you have installed HTSeq (see Prequisites and installation), you can run htseq-count from the command				
	htseq-count [options] <align< th=""><th>nment_files> <gff_file></gff_file></th><th></th><th></th></align<>	nment_files> <gff_file></gff_file>			
	If the file htseq-count is not in your path, you can, alternatively, call the script with				
	python -m HTSeq.scripts.cour	nt [options] <alignment_< th=""><th>files> <gff_file></gff_file></th><th></th></alignment_<>	files> <gff_file></gff_file>		
	The <alignment_files> are one or (SAMtools contain Perl scripts to con- a splicing-aware aligner such as STA CIGAR field.</alignment_files>	r more files containing the aligne vert most alignment formats to s R. HTSeq-count makes full use	ed reads in SAM format. SAM.) Make sure to use of the information in the		
	To read from standard input, use - as	<pre><alignment_files>.</alignment_files></pre>			
	If you have paired-end data, pay atten	tion to the -r option described I	below.		
	The <gff_file> contains the feature</gff_file>	es in the GFF format.	I v: release_0.10.0 ▼		
	The script outputs a table with cour which count reads that were not court	nts for each feature, followed b nted for any feature for various	by the special counters, reasons. The names of	~	

①<alignment_files>や②<gff_file>は、③htseq-countプロ グラムの実行時に必須のファイル達です。確かに①マ ッピング結果ファイルや、②アノテーションファイルがな いとカウント情報を取得しようがないので妥当ですね。

	(複数ファイルを一度に実行したいヒトは)①
<pre><alignment files=""></alignment></pre>	<pre><alignment_files>と複数形になっているのを見逃 さない、②でもSAM形式であれば、複数ファイル</alignment_files></pre>
← ④ ■ http://htseq.readthedocs.io/en/release_0.10.0/count.html マ C 検索. ■ Counting reads in features ×	を指定可能と書いてある。BAMファイル(SAMの バイナリ版)とは書いてはいないものの、2015年
read ? gene_A gene_B (both g	いでしょうという思想のもと、後にoptionのところで BAMファイルの取り扱いに関する記述を探す。
Usage	
After you have installed HTSeq (see Prequisites and in from the command line: htseq-count [options] <a lignment_files=""> If the file htseq-count is not in your path, you can, alt	<pre>stallation), you can run htseq-count <gff_file> ternatively, call the script with</gff_file></pre>
python -m HTSeq.scripts.count [options] The <alignment_files> are one or more files conta (SAMtools contain Perl scripts to convert most alignment a splicing-aware aligner such as STAR. HTSeq-count CIGAR field.</alignment_files>	<alignment_files> <gff_file> ining the aligned reads in SAM format. ent formats to SAM.) Make sure to use makes full use of the information in the</gff_file></alignment_files>
To read from standard input, use - as <alignment_f:< th=""><th>iles>.</th></alignment_f:<>	iles>.
The <gff_file> contains the features in the GFF form</gff_file>	nat. v: release_0.10.0
The script outputs a table with counts for each feat which count reads that were not counted for any feat	ure, followed by the special counters, ure for various reasons. The names of

アノテーションファイルは複数のわけがないので、①<gff_file> となっているのは妥当ですね。②GFF形式のようです。但し !、③のリンク先がGFF2 (GTF形式のこと)となっていること から、デフォルトはGFF3ではないのだろうと予想を立てる。

f file>

strand-specific

①少しページ下部に移動。②strand-specific protocol で得られたRNA-seqデータをデフォルトにするのは妥 当。そうでないデータの場合は、得られるカウント総数 が当然少なくなるので--stranded=noオプションをつけ ねばならないと書かれている。

http://htseq.readthedocs.io/en/release_0.10.0/count.html

🔢 Counting reads in features ... 🗡

- not_aligned: reads (or read pairs) in the SAM file without alignment
- <u>__alignment_not_unique</u>: reads (or read pairs) with more than one reported alignment. These reads are recognized from the NH optional SAM field tag. (If the aligner does not set this field, multiply aligned reads will be counted multiple times, unless they getv filtered out by due to the <u>_a</u> option.) Note that if the <u>__nonunique</u> all option was used, these reads (or read pairs) are still assigned to features.

2

Important: The default for strandedness is *yes.* If your RNA-Seq data has not been made with a strand-specific protocol, this causes half of the reads to be lost. Hence, make sure to set the option --stranded=no unless you have strand-specific data!

Options

-f <format>, --format=<format>

Format of the input data. Possible values are sam (for text SAM files) and bam (for binary BAM files). Default is sam.

For paired-end data, the alignment have to be sorted either by read name or by alignment position. If your data is not sorted, use the samtools sort function of samtools to sort it. Use this option, with name or pos for <order> to indicate how the input data has been sorted. The default is name.

If name is indicated, htseq-count expects all the alignments for the reads of a given read pair to appear in adjacent records in the input data. For pos, this is not expected;

rather, read alignments whose mate alignment have not yet bee buffer in memory until the mate is found. While, strictly speaking, the strictly speaking th

with unsorted data, sorting ensures that most alignment mates appear close to each other in the data and hence the buffer is much less likely to overflow.

⁻r <order>, --order=<order>

Options

http://htseq.readthedocs.io/en/release_0.10.0/count.html

🔢 Counting reads in features ... 🛛 🛛

- __not_aligned: reads (or read
- __alignment_not_unique: realignment. These reads are reads

ここからが①オプションの説明部分。②これはフォーマット の指定に関するもの。マッピング結果ファイルのフォーマットに関するものであることは、その後の記述内容からわか る。デフォルトはSAM形式であるので、SAMファイルを読み 込ませる場合は、-fや--formatのオプションは書かなくても よいことがわかる。BAMファイルを入力として与えたい場合 は、-f bamや--format=bamと書けばよいのだと読み解く。

aligner does not set this field, multiply aligned reads will be counted multiple times, unless they getv filtered out by due to the -a option.) Note that if the --nonunique all option was used, these reads (or read pairs) are still assigned to features.

Important: The default for strandedness is *yes.* If your RNA-Seq data has not been made with a strand-specific protocol, this causes half of the reads to be lost. Hence, make sure to set the option <u>--stranded=no</u> unless you have strand-specific data!

Options

-f <format>, --format=<format>

Format of the input data. Possible values are sam (for text SAM files) and bam (for binary BAM files). Default is sam.

-r <order>, --order=<order>

For paired-end data, the alignment have to be sorted either by read name or by alignment position. If your data is not sorted, use the samtools sort function of samtools to sort it. Use this option, with name or pos for <order> to indicate how the input data has been sorted. The default is name.

If name is indicated, htseq-count expects all the alignments for the reads of a given read pair to appear in adjacent records in the input data. For pos, this is not expected;

rather, read alignments whose mate alignment have not yet bee buffer in memory until the mate is found. While, strictly speaking, the vertice of the strictly speaking, the vertice of the strictly speaking the vertice of the strictly speaking the strictly speaking the vertice of the strictly speaking the strictly speaking the vertice of the strictly speaking the strictly speaking the vertice of the strictly speaking the strictly speaking the vertice of the strictly speaking the strict

with unsorted data, sorting ensures that most alignment mates appear close to each other in the data and hence the buffer is much less likely to overflow.

Options

①の<format>という記述に注目!。<…>は絶対に必要なもの、という意味でした。これは、-f自体はつけてもつけなくてもよいものだが、-fをつける場合はsamまたはbamもセットで指定しなきゃだめよ!という意味です。

http://htseq.readthedocs.io/en/release_0.10.0/count.html

Option

🔢 Counting reads in features ... 🗡

- not_aligned: reads (or read pairs) in the SAM file without alignment
- <u>alignment_not_unique</u>: reads (or read pairs) with more than one reported alignment. These reads are recognized from the NH optional SAM field tag. (If the aligner does not set this field, multiply aligned reads will be counted multiple times, unless they getv filtered out by due to the -a option.) Note that if the --nonunique all option was used, these reads (or read pairs) are still assigned to features.

Important: The default for strandedness is yes. If your RNA-Seq data has not been made with a strand-specific protocol, this causes half of the reads to be lost. Hence, make sure to set the option <u>--stranded=no</u> unless you have strand-specific data!

-f <format>, --format=<format>

Format of the input data. Possible values are sam (for text SAM files) and bam (for binary BAM files). Default is sam.

-r <order>, --order=<order>

For paired-end data, the alignment have to be sorted either by read name or by alignment position. If your data is not sorted, use the samtools sort function of samtools to sort it. Use this option, with name or pos for <order> to indicate how the input data has been sorted. The default is name.

If name is indicated, htseq-count expects all the alignments for the reads of a given read pair to appear in adjacent records in the input data. For pos, this is not expected;

rather, read alignments whose mate alignment have not yet bee buffer in memory until the mate is found. While, strictly speaking, the

with unsorted data, sorting ensures that most alignment mates appear close to each other in the data and hence the buffer is much less likely to overflow.

http://htseq.readthedocs.io/en/release_0.10.0/count.html

Counting reads in features ... ×

①少しページ下部に移動。②がOptionsの説明の少し上の部分 に書かれていた、strand-specific protocolで得られたRNA-seq Strand-Specific に書かれていた、strand-specific protocolで待られたRNA-sec データの取り扱いに関する詳細な説明。--stranded=noと同じ 意味なのが-s noであることが読み取れます。最後の3行分は paired-endリードの取り扱いに関するものです。が、-s reverse または---stranded=reverseをつけた場合にどのようにruleが reverseされるのかは私にはよくわかりません。 in memory until the mates effect for single end or pair

r: release 0.10.0 ▼

-s <yes/no/reverse>, --stranded=<yes/no/reverse> whether the data is from a strand-specific assay (default: yes)

For stranded=no, a read is considered overlapping with a feature regardless of whether it is mapped to the same or the opposite strand as the feature. For stranded=yes and single-end reads, the read has to be mapped to the same strand as the feature. For paired-end reads, the first read has to be on the same strand and the second read on the opposite strand. For stranded=reverse, these rules are reversed.

-a <minaqual>, --a=<minaqual>

When <alignment file> is

skip all reads with alignment quality lower than the given minimum value (default: 10 -Note: the default used to be 0 until version 0.5.4.)

-t <feature type>, --type=<feature type>

feature type (3rd column in GFF file) to be used, all features of other type are ignored (default, suitable for RNA-Seq analysis using an Ensembl GTF file: exon)

-i <id attribute>, --idattr=<id attribute>

GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the same feature. The feature ID is used to identity the counts in the output table. The default, suitable for RNA-Seq analysis using an Ensembl GTF file, is gene id.

--additional-attr=<id attributes>

Additional feature attributes, which will be printed as an additional column after the primary attribute column but before the counts column(s). The default is none a suitable

デフォルトはGTF

アノテーションファイル<gff_file>の説明部分で、GFF2 形式のページに飛ばされていた。このため、おそらく GTF形式のことだろうとは予想していたが、②の記述 を眺めることでデフォルトはGTFだと確信する。

v: release 0.10.0

http://htseq.**readthedocs.io**/en/release_0.10.0/count.html

🔢 Counting reads in features ... 🗡

When <alignment_file> is paired end sorted by position, allow only so many reads to stay in memory until the mates are found (raising this number will use more memory). Has no effect for single end or paired end sorted by name. (default: 30000000)

- C

-s <yes/no/reverse>, --stranded=<yes/no/reverse>
whether the data is from a strand-specific assay (default: yes)

For stranded=no, a read is considered overlapping with a feature regardless of whether it is mapped to the same or the opposite strand as the feature. For stranded=yes and single-end reads, the read has to be mapped to the same strand as the feature. For paired-end reads, the first read has to be on the same strand and the second read on the opposite strand. For stranded=reverse, these rules are reversed.

```
-a <minaqual>, --a=<minaqual>
```

skip all reads with alignment quality lower than the given minimum value (default: 10 — Note: the default used to be 0 until version 0.5.4.)

```
-t <feature type>, --type=<feature type>
```

feature type (3rd column in GFF file) to be used, all features of other type are ignored (default, suitable for RNA-Seq analysis using an Ensembl GTF file: exon)

-i <id attribute>, --idattr=<id attribute>

GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the same feature. The feature ID is used to identity the counts in the output table. The default, suitable for RNA-Seq analysis using an Ensembl GTF file, is gene_id.

--additional-attr=<id attributes>

Additional feature attributes, which will be printed as an additional column after the primary attribute column, but before the counts column(s). The default is none, a suitable

①少しページ下部に移動。②FAQ。③ HTSeqは、複数個所にマップされるリ ードは無視するポリシーなのですね。

_

🔎 🖓 🖧 🖗 🙂

 \times

() http://htseq.**readthedocs.io**/en/release_0.10.0/count.html

▼ ぴ | 検索...

Counting reads in features ... ×

FAC

-h, --help

Show a usage summary and exit

Frequenctly asked questions

My shell reports "command not found" when I try to run "htseq-count". How can I launch the script?

The file "htseq-count" has to be in the system's search path. By default, Python places it in its script directory, which you have to add to your search path. A maybe easier alternative is to write python -m HTSeq.scripts.count instead of htseq-count, followed by the options and arguments, which will launch the htseq-count script as well.

Why are multi-mapping reads and reads overlapping multiple features discarded rather than counted for each feature?

The primary intended use case for htseq-count is differential expression analysis, where one compares the expression of the same gene across samples and not the expression of different genes within a sample. Now, consider two genes, which share a stretch of common sequence such that for a read mapping to this stretch, the aligner cannot decide which of the two genes the read originated from and hence reports a multiple alignment. If we discard all such reads, we undercount the total output of the genes, but the *ratio* of expression strength (the "fold change") between samples or experimental condition will still be correct, because we discard the same fraction of reads in all samples. On the other hand, if we counted these reads for both genes, a subsequent diffential-expression analysis might find false positives: Even if only one of the gene changes increases its expression in reaction to treatment, the additional read caused by this would be counted for both genes, giving the wrong appearance that both genes reacted to the treatment.

incorroctly

I have used a GTF file generated by the Table Browser function of the UCSC Genome Browser, and most reads are counted as ambiguous. Why?

ambiguous

HTSeq(のデフォルトである①unionモード)では、 ②複数の領域にまたがってマップされるリー ドは、ambiguousとなる。確かにそうでしたね。

+ http://htseq.readthedocs	.io/en/release_0.10.0/count.html	→ 0 検索		- ロ × 命☆隠(
Counting reads in features X	The following figure illustrates the option:	effect of these three	e modes and t	henonunique
		union	intersection _strict	intersection _nonempty
	gene_A	gene_A	gene_A	gene_A
	.gene_A	gene_A	no_feature	gene_A
	gene_A gene_A	gene_A	no_feature	gene_A
	gene_A gene_A	gene_A	gene_A	gene_A
	gene_A gene_8	gene_A	gene_A	gene_A
	gene_A gene_B	ambiguous (both genes with nonunique all)	gene_A	gene_A
	gene_A gene_B	(both gene	ambiguous s withnonun	v. release_0.10.0 ▼ ique all)

FAQ

Counting reads in features ... ×

①一番下まで移動。②このあたりを眺めることで、 GFF3ファイルの読み込ませ方や、geneやexon以外 の任意のfeatureを用いてカウント情報を取得する場 合のオプションの指定法を試行錯誤しながら学ぶ。

🗇 v: release 0.10.0 🔻

previous | next | index

Http://htseq.readthedocs.io/en/release_0.10.0/count.html

union would not be appropriate and hence tend to recommend to just stick to union.

- C

I have a GTF file? How do I convert it to GFF?

No need to do that, because GTF is a tightening of the GFF format. Hence, all GTF files are GFF files, too. By default, htseq-count expects a GTF file.

I have a GFF file, not a GTF file. How can I use it to count RNA-Seq reads?

The GTF format specifies, inter alia, that exons are marked by the word exon in the third column and that the gene ID is given in an attribute named gene_id, and htseq-count expects these words to be used by default. If you GFF file uses a word other than exon in its third column to mark lines describing exons, notify htseq-count using the --type option. If the name of the attribute containing the gene ID for exon lines is not gene_id, use the --idattr. Often, its is, for example, Parent, GeneID or ID. Make sure it is the gene ID and not the exon ID.

How can I count overlaps with features other than genes/exons?

If you have GFF file listing your features, use it together with the <u>--type</u> and <u>--idattr</u> options. If your feature intervals need to be computed, you are probably better off writing your own counting script (provided you have some knowledge of Python). Follow the tutorial in the other pages of this documentation to see how to use HTSeq for this.

How should I cite htseq-count in a publication?

Please cite HTSeq as follows: S Anders, T P Pyl, W Huber: *HTSeq — A Python framework to work with high-throughput sequencing data.* bioRxiv 2014. doi: 10.1101/002824. (This is a preprint currently under review. We will replace this with the reference to the final published version once available.)

HTSeq 0.10.0 documentation »

© Copyright 2010, Simon Anders. Created using Sphinx 1.7.4.

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

①乳酸菌ゲノムへのマッピング結果BAMファイル (機能ゲノム学第4回のスライド103)と、②対応す るGFF3ファイルを入力として、③htseq-countで geneレベルのカウントデータを得る例を示します。

htseq-count実行	
http://htseq. readthedocs.io /en/release_0.10.0/count.html	- ¢
Counting reads in features ×	
read	

alignment not unique ? (both genes with --nonunique all) gene Usage After you have installed HTSeq (see Prequisites and installation), you can run htseq-count from mand line: htseq-count [options] <alignment files> <gff file> If the file htseq-count is not in your path, you can, alternatively, call the script with python -m HTSeq.scripts.count [options] <alignment files> <gff file> The <alignment files> are one or more files containing the aligned reads in SAM format. (SAMtools contain Perl scripts to convert most alignment formats to SAM.) Make sure to use a splicing-aware aligner such as STAR. HTSeq-count makes full use of the information in the CIGAR field. To read from standard input, use - as <alignment files>. If you have paired-end data, pay attention to the -r option described below. The <gff file> contains the features in the GFF format. v: release 0.10.0 -The script outputs a table with counts for each feature, followed by the special counters, which count reads that were not counted for any feature for various reasons. The names of

htseq-count実行コマンド

入力ファイルやオプション について説明します。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッビング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオブションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gtf)は、「イントロ | ファイル形式の変換 | GFF3 --> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bam</u>も長いので、hoge.bamとして取 り扱います。

1.GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定(transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力ファイルは<u>output GFF3 transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

①乳酸菌ゲノムへのマッピング結果BAMファイル(hoge.bam) htseq-countを 実行する上で絶対必要な入力ファイルに相当するものです。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後|カウント情報取得|single-end|ゲノム|アノ テーション有|QuasR(Gaidatzis 2015)]の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gf3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gff)は、「イントロ| ファイル形式の変換|GFF3--> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bam</mark>も長いので、hoge.bamとして取 り扱います。

1.GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output_GFF3_transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

HTSeqのマニュアル中のこれらに相当。

htseq-count実行コマンド

			_		×
http://htseq.readthedo	:s.io/en/release_0.10.0/count.html	▼ Ĉ 検索	Q ~ (î	17 193	<u></u>
🔃 Counting reads in features 🗙					
					^
	gene_A gene_B	alignment_not (both genes withn	_unique ionunique all)		
	Usage				
	After you have installed HTSeq (see Pr	requisites and installation), you	u can run htseq-	count	
	htseq-count [options] <alignm< th=""><th>ment_files> <gff_file></gff_file></th><th></th><th></th><th></th></alignm<>	ment_files> <gff_file></gff_file>			
	If the file htseq-count is not in your pa	ath, you can, alternatively, call	the script with		
	python -m HTSeq.scripts.count	[options] <alignment_< td=""><td>files> <gff_f< td=""><td>file></td><td></td></gff_f<></td></alignment_<>	files> <gff_f< td=""><td>file></td><td></td></gff_f<>	file>	
	The <alignment_files> are one or r (SAMtools contain Perl scripts to conve a splicing-aware aligner such as STAR. CIGAR field.</alignment_files>	nore files containing the aligne ert most alignment formats to s . HTSeq-count makes full use	ed reads in SAM SAM.) Make sure of the information	format. to use n in the	
	To read from standard input, use - as <	alignment_files>.			
	If you have paired-end data, pay attention	on to the -r option described l	below.		
	The <gff_file> contains the features</gff_file>	in the GFF format.	v: release_0	.10.0 🔻	
	The script outputs a table with counts which count reads that were not count	ofor each feature, followed b ed for any feature for various	y the special co reasons. The na	unters, mes of	~
hoge.gff3

マップした乳酸菌ゲノムに対応するGFF3ファイルの大元 は①ですが、赤下線部分でも書いてあるように、見やすく する目的で②hoge.gff3と短いファイル名にしてあります。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、<u>サンプルデータ</u>47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gff)は、「イントロ」 ファイル形式の変換 | GFF3 --> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bamも長いので、hoge.bamとして取り扱います。

1. GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは <u>output_GFF3_transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

hoge.bam

①乳酸菌ゲノムへのマッピング結果BAMファイル (hoge.bam)についても同様で、大元は②です。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。

ですが、ファイル名が長いと見づらいので、<u>hoge.gff3</u>として取り扱います。対応するGTF形式のアノテーションファイル(<u>hoge1.gtf</u>)は、「イントロ ファイル形式の変換 | <u>GFF3 --> GTF</u>」の例題1で作成したものです。また、<u>sample RNAseq4_3b6c652a602a.bam</u>も長いので、<u>hoge.bam</u>として取 り扱います。

1. GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力ファイルは<u>output GFF3 transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

オプション[options]

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gtf)は、「イントロ

ファイル形式の変換 | <u>GFF3 --> GTF</u>Jの例題1で作成したものです。また、<u>sample RNAseq4 3b6c652a602a.bam</u>も長いので、<u>hoge.bam</u>として取 り扱います。

1. GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは <u>output_GFF3_transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

①これらがオプション。

①マッピング結果がBAMファイルの 場合は、②-f bamとしなければならな い。SAMファイルの場合は、②はなく てまたいが-f somと書いてまたい

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | H<mark>' てもよいが-f samと書いてもよい。</mark>

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、<u>サンプルデータ</u>47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteria</u>から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gtf)は、「イントロー

ファイル形式の変換 | <u>GFF3 --> GTF</u>」の例題1で作成したものです。また、<u>sample RNAseq4 3b6c652a602a.bam</u>も長いので、<u>hoge.bam</u>として取 り扱います。

1. GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは <u>output_GFF3_transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

	- 64				<mark>13列</mark>	目の	ger	ne	と、	、 <mark>②</mark> 9歹	<mark>」目の(</mark>	3) gene	_idです。	gene	ベルの	カウン	トデータ
	ho	ge	e.c	off3	がほし にかし	」いの して!	だ)、	かと	らい	、①の う気持	みの指 ちもわ	i定でし からな	いでは	ないか(ない。し	その指 かしな7	定だ! がら、9	ナでどう 列目に
ן דר	自動保存 💽 🦻 イル ホーム	⑦日 和入	5- . r	♂ → ↓ La -ジレイアウト	は多 いう 理	数の情 】解で	野山より	な , ヽ)	が言)を	記載されていた。	れてい。 及うかを	るため	、9列目 、なけれ	内のどこ ば困るが	つfeat からだと	:ure(悄 :思え	青報、と ずよい。
18	*	: :	× •	∫ f _x ID= rep	gene:LC	OOC260 <u>.</u> initiatio	_100 n pro)01(otei	0;N in D	ame=dna)naA;gen	aA;biotype e_id=LOO	=protein C260_10	_coding;des 0010;logic_r	cription=cl name=ena;	hromosom version=1	al ^	
	А		В	С	D	Е	F	G	н			К	L	M	N	(📤	-
1	##gff-ve	ersion	3														-
2	##seque	ence-r	regio	n Chromo	some	360 22	277	85	53								
3	3 #!genome-build European Nucleotide Archive ASM82939v1																
4	4 #!genome-version GCA_000829395.1																
5	#!genon	ne-dat	te 20	14-11													
6	#!genon	ne-bui	ild-a	ccession G	CA_00	08293	395	.1									
7	#!geneb	uild-la	ast-u	pUced 20	14-11												
8	Chromo	some	ena	gene	360	1676		+ .	1	D=gen	e:LOOC	260_10	0010;Na	me=dna/	A;biotyp	e=pr	
9	Chromo	some	ena	transcript	360	1676		+ .	I	D=tran	script:B	AP845	81;Paren	t=gene: <mark>l</mark>	_00C26	0_10	
10	Chromo	some	ena	exon	360	1676		+ .	F	Parent=	-transcr	ipt:BAF	284581;N	ame=BA	P84581	-1;cc	
11	Chromo	some	ena	CDS	360	1676		+ (0	D=CDS	S:BAP84	581;Pa	arent=tra	nscript:B	AP8458	31;prc	
12	###																
13	Chromo	some	ena	gene	1852	2991		+ .	1	D=gen	e:LOOC	260_10	0020;Na	me=dnal	V;biotyp	e=pr	
14	Chromo	some	ena	transcript	1852	2991		+ .	1	D=tran	iscript:B	AP845	82;Paren	t=gene:l	.00C26	0_10	
15	Chromo	some	ena	exon	1852	2991		+ .	F	Parent=	-transcr	ipt:BAF	284582;N	ame=BA	P84582	-1;cc	
16	Chromo	some	ena	CDS	1852	2991		+ (0 1	D=CDS	S:BAP84	582;Pa	arent=tra	nscript:B	AP8458	32;prc 🗸	1
	<	Lacto	obacillu	us_hokkaidone	nsis_jc	(+)				÷ 4						
準備	皖了											E] -	+	100%	1

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定(transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力ファイルは<u>output GFF3 transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルはoutput GFF3 exon.txtです。2,262 exonsですね。

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

output_GFF3_gene.txt

①1列目が指定したfeatureで、②2列目が カウント数。③この結果ファイルには、最 後の5行分にログ情報が含まれている。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

<u>HTSeq</u> というPythonブログラムを用いてカウント情報を得るやり方を示します。 ここでは、 「マップ後 カウント情報取得 sir テーション有 QuasR(Gaidatzis 2015)」 の例題10を実行して得られたマッビング結果(sample RNAseq4 3b6c652a602a.bar	igle-end ゲノム m)を利用します。して	2
は、 <u>Bowtie</u> をデフォルトオブションで実行したものです。マップする側のファイルは、 <u>サンブルデータ</u> 47のFASTA形式ファイ (sample_RNAseo4_fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの	LOOC260_100010	2
ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGEE3形式のアノテージョンファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosom	LOOC260_100020	5
ですが、ファイル名が長いと見づらいので、 <u>hoge.gff3</u> として取り扱います。対応するGTF形式のアノテーションファイル(<u>ho</u> ファイル形式の変換」GFF3> GTFIの例題1で作成したものです。また、sample RNAseo4 3b6c652a602a bamも長いの	LOOC260_100030	3
りが1000000000000000000000000000000000000	LOOC260_100040	0
1. GFF3でgeneレベルのカウントデータを取得する場合:	LOOC260 100050	0
アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のgeneでレベル指定、9列目のgene_idでfe (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAM	at DLOOC260_100060	0
$771701a \underline{\text{output GPP3 gene.txt}} \cup 9 \circ 2,194 \text{ genes } \cup 9 4a \circ$	_LOOC260_100070	0

2. GFF3 Ctranscriptレベルのリフントナーダで収得9 る場合:	LOOC260 122	680	0
- アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のtranscriptでレヘル指定、9列目のtranscrip 定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとして 合は sam)。出力ファイルは output_GFF3_transcript.txtです。2,250 transcriptsですね。	 LOOC260_122	690	0
htseq-count -t transcript -i transcript id -f bam hoge bam hoge $gff3 > output GEF3$ transcr	no_feature		0
hered counter a channel the Tar and the part here here the for the Tar and the tar	ambiguous		1
3. GFF3でexonレベルのカウントデータを取得する場合:	too_low_aQ	ual	0
アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のexonでレベル指定、9列目のexon idでfea	not_aligned		0
(exon_idu)でわりにParent PName COOK/しています。マッピング結果がBAMノアイル(<u>hoge.bam</u>)なのです bamとしている sam)。出力ファイルは <u>output GFF3 exon.txt</u> です。2,262 exonsですね。	alignment_n	ot_unique	0

output_GFF3_gene.txt

①23最初の3 features上に、計10リード 分カウントされている。また、④1リードが ambiguous扱いになっていることもわかる。

LOOC260 100050

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後|カウント情報取得|single-end|ゲノム|アノ テーション有|QuasR(Gaidatzis 2015)」の例題10を実行して得られたマッビング結果(sample RNAseq4 3b6c652a602a.hm)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式フレート (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されているLactobacillus casei 12,404 ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) の応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chrom ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル ファイル形式の変換|GFF3-->GTFJの例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bam も長い

1. GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeat (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの LOOC260_100060 ファイルはoutput GFF3 gene.txtです。2,194 genesですね。 LOOC260_100070

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

_				
2	.GFF3でtranscriptレヘルのカリントナーダを収得する場合:	LOOC260 122	680	0
	アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のtranscriptでレベル指定、9列目のtranscrip 定 (transcript_idの代わりにIDやParentでもOK)しています。 マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとし 合は sam)。 出力ファイルは output_GFF3_transcript.txtです。 2.250 transcriptsですね。	LOOC260_122	690	0
	htseq-count -t transcript -i transcript id -f bam hoge.bam hoge.gff3 > output GFF3 transcript	no_feature		0
	4	ambiguous		1
3	.GFF3でexonレベルのカウントデータを取得する場合:	too_low_aQ	ual	0
	アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のexonでレベル指定、9列目のexon_idでfea	not_aligned		0
	(exon_idの)へわりにParentやNameでもOK)しています。マッピング結果がBAMノアイル(<u>hoge.bam</u>)なので-f bamとしてい。 sam)。出力ファイルは <u>output GFF3 exon.txt</u> です。2,262 exonsですね。	alignment_n	ot_unique	0

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

2

5

3

0

0

0

0

おさ	い	1.1											
##gff-version	3												
##sequence-	regio	n Chromo	some	360.2	27	78	53						
#!genome-bu	ild Ei	Jropean Nu	ucleoti	de Arc	hi	ve	AS	SM82939v					
#!genome-ver	rsion	GCA 0008	329395	5.1									
#!genome-date 2014-11													
#!genome-bu	ild-a	ccession G	CA 00	08293	39	5.1							
#!genebuild-la	ast-u	updated 20	14-11										
Chromosome	ena	gene	360	1676		+		D=gene:					
Chromosome	ena	transcript	360	1676		+		D=trans					
Chromosome	ena	exon	360	1676		+		Parent=t					
Chromosome	ena	CDS	360	1676		+	0	ID=CDS:					
###					-		-						
Chromosome	ena	gene	1852	2991		+		D=gene:					
Chromosome	ena	transcript	1852	2991		+		ID=trans					
Chromosome	ena	exon	1852	2991		+		Parent=t					
Chromosome	ena	CDS	1852	2991		+	0	ID=CDS:					
###													
Chromosome	ena	gene	3233	3457		+		D=gene:					
Chromosome	ena	transcript	3233	3457		+		ID=trans					
Chromosome	ena	exon .	3233	3457		+		Parent=t					
Chromosome	ena	CDS	3233	3457		+	0	ID=CDS:					
###													
Chromosome	ena	gene	3467	4588		+	K	D=gene:					

 ①マップする側(sample_RNAseq4.fa)の計
 11リードは、②hoge.gff3中の③gene領域を 参考にしながら作成。全て完全一致でマッ プされるように設計。

>Chromosome_361_400
TGACTGATTTAGAAACACTTTGGGACACAATTAAAGAATC
>Chromosome_1637_1676
AGAAGATGTCCAAAACCTTAAAATGGAGCTAAAGCCATAG
>Chromosome_1851_1890
CATGAAATTTACAATTAGTCGTGCAACTTTTACAGCCAAA
>Chromosome_1843_1882
TAACCAATCATGAAATTTACAATTAGTCGTGCAACTTTTA
>Chromosome_1833_1872
CTTCAAGGAGTAACCAATCATGAAATTTACAATTAGTCGT
>Chromosome_1823_1862
CAAATTCAACCTTCAAGGAGTAACCAATCATGAAATTTAC
>Chromosome_1813_1852
AAATTAAAGACAAATTCAACCTTCAAGGAGTAACCAATCA
>Chromosome_3418_3457
GATTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAG
>Chromosome_3420_3459
TTGCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGC
>Chromosome_3422_3461
GCAGATAATGGGACATTTGTCATTCAAAATGAGTAGGCAA
>Chromosome_3443_3482
ATTCAAAATGAGTAGGCAACTTAAATGATTTTAAAAGAAC

対応関係のおさらい

3													
regio	n Chromo	some	360 2	27	78	53	}						
ild Ει	uropean Nu	ucleoti	de Arc	chi	ve	A	SM82939v						
rsion	GCA_0008	329395	5.1										
te 20	14-11												
#!genome-build-accession GCA_000829395.1													
#!genebuild-last-updated 2014-11													
ena	gene	360	1676		+	K	D=gene:						
ena	transcript	360	1676		+		ID=trans						
ena	exon	360	1676		+		Parent=t						
ena	CDS	360	1676		+	0	ID=CDS:						
ena	gene	1852	2991		+		D=gene:						
ena	transcript	1852	2991		+		ID=trans						
ena	exon	1852	2991		+		Parent=t						
ena	CDS	1852	2991		+	0	ID=CDS:						
ena	gene	3233	3457		+		D=gene:						
ena	transcript	3233	3457		+		ID=trans						
ena	exon	3233	3457		+		Parent=t						
ena	CDS	3233	3457		+	0	ID=CDS:						
ena	gene	3467	4588		+		ID=gene:						
	3 regio ild Eu rsion te 20 ild-au ena ena ena ena ena ena ena ena ena ena	3 region Chromo ild European Nu rsion GCA_0008 te 2014-11 ild-accession G ast-updated 20 ena gene ena transcript ena gene ena transcript ena gene ena transcript ena gene ena transcript ena gene ena transcript ena gene ena transcript ena gene	3AregionChromosomeild European Nucleotirsion GCA_000829395te 2014-11ild-accession GCA_000ast-updated 2014-11enagene360enatranscriptast-updated 2014-11enageneast-updated 2014-11enageneast-updated 2014-12enageneast-updated 2014-13enageneast-updated 2014-14enageneast-updated 2014-15enacDSast-updated 2014-11enageneast-updated 2014-11ast-updated 20	3 Image Ima	3 Image of the second seco	3 Image in the image in	3 Image Ima						

①2リードが領域[360, 1676]、25リードが領 域[1852, 2991]、③3リードが領域[3233, 3457]の少なくとも一部に被るように設計され ていた。また、④最後の1リードが複数の遺 伝子領域にまたがるように設計されている。

①~④のようなカウント結果になったのです。

それ	24	ゆえ.						
##gff-version	3	• · <u> </u>						
##sequence-r	regio	n Chromo	some	360 22	27	78	53	
#!genome-bui	ild Ει	uropean Nu	icleoti	de Arc	hi	ve	A	SM82939
#!genome-ver	rsion	GCA_0008	329395	5.1				
#!genome-dat	te 20	14-11						
#!genome-bui	ild-a	ccession G	CA_00	08293	39	5.1		
#!genebuild-la	ast-u	pdated 20	14-11					
Chromosome	ena	gene	360	1676		+		ID=gene:
Chromosome	ena	transcript	360	1676		+		ID=trans
Chromosome	ena	exon	360	1676		+		Parent=t
Chromosome	ena	CDS	360	1676		+	0	ID=CDS:
###								
Chromosome	ena	gene	1852	2991		+		ID=gene:
Chromosome	ena	transcript	1852	2991		+		ID=trans
Chromosome	ena	exon	1852	2991		+		Parent=t
Chromosome	ena	CDS	1852	2991		+	0	ID=CDS:
###								
Chromosome	ena	gene	3233	3457		+		ID=gene:
Chromosome	ena	transcript	3233	3457		+		ID=trans
Chromosome	ena	exon	3233	3457		+		Parent=t
Chromosome	ena	CDS	3233	3457		+	0	ID=CDS:
###								
Chromosome	ena	gene	3467	4588		+		ID=gene:

	LOOC260_100010	2
2)	LOOC260_100020	5
3	LOOC260_100030	3
7	LOOC260_100040	0
	LOOC260_100050	0
	LOOC260_100060	0
	LOOC260_100070	0

featurelt...

①がfeatureであり、②赤下線部分の情報を 抽出して得られていることが分かります。

	自動保存 💽 🎵 🚆	ب ه	⊘~ ∓			ho	ge.gf	ff3 保存	しました		ل	インイン	Ŧ	—		×	
יד	イル ホーム 挿入	、 ^	ージ レイアウト	数式	データ	校閲	큀	転 2 実行	うしたい作業を	えカしてください	,1		-		Ŕ	共有	
18	▼ : :	×	f _x ID:	=gene:L(DOC260	_100	010;	;Name=dnaA	;biotype=	=protein_c	oding;desc	r LOOC	260_	10001	10	Т	2
			rep	lication	initiatio	n pro	tein	n DnaA;gene_	_id= <u>L000</u>	260_1000	10;logic_na	LOOC	260_	10002	20		5
	А	В	С	D	Е	FG	н	1	J	2	L	LOOC	260_	10003	30		3
1	##gff-version	3	_ !									LOOC	260	10004	10		0
2	##sequence-	regio	n Chromo	osome	360 2	2118 Shiw	853	5 6 10 2 0 2 0	1			LOOC	260	10005	50		0
4	#!genome-vei	rsion	GCA 0008	829395	ue Arc 5.1		- A	210102939	VI			1000	260	10006	50		0
5	#!genome-da	te 20)14-11										200_	1000	70		0
6	#!genome-bu	ild-a	ccession G	CA_00	0829	395.	1					LUUU	,200_	1000	10		
7	#!genebuild-la	ast-i	pdated 20	14-11													
8	Chromosome	ena	gene	360	1676	. +		ID=gene:	:LOOC2	60_100	010;Nam	ne=dna	A;bio	type=	prote	in	
9	Chromosome	ena	transcript	360	1676	. +		ID=trans	cript:B/	AP84581	;Parent	1000		10000	10001		5
10	Chromosome	ena	exon	360	1676	. +		Parent=t	ranscri	pt:BAP8	4581;Na		,260_	12268	30		0
11	Chromosome	ena	CDS	360	1676	. +	- 0	ID=CDS:	BAP845	581;Pare	ent=tran	sLOOC	260_	12269	90		0
12	###											no	faati	Iro			0
13	Chromosome	ena	gene	1852	2991	. +		ID=gene:	:LOOC2	60_100	020;Nam	n	้าะสแ				0
14	Chromosome	ena	transcript	1852	2991	. +		ID=trans	cript:B/	AP84582	Parent:	am	biguo	us			1
15	Chromosome	ena	exon	1852	2991	. +	• •	Parent=t	ranscri	pt:BAP8	4582;Na	too	_low	_aQua	l –		0
16	Chromosome	ena	CDS	1852	2991	. +	- 0	ID=CDS:	BAP84	582;Pare	ent=tran	s not	alig	ned			0
準備	noge 読了		+							•		alig	gnmei	nt_not	_uniq	ue	0

								<mark>①の</mark>	<mark>情報を</mark>	<mark>抽出すべ</mark>	<mark>く、htseq-count実行時</mark>	1こ
	指定	I	たオ	\neg	ミ ノ=	⊐`			したオ	プションが	、(3列目の)②-t gene	Ł.
										<mark>3)−ı gene</mark> _	」はたったことを思い出く	<u>こつ</u> 。
	自動保存 💽 🛪 📮	€.	¢- ∓			hog	e.gf	ff3 保存しました		ታብ	⁽ ンイン 団 ー ロ X	
יד	イル ホーム 挿入		ページ レイアウト	数式	データ オ	校閲	₹	気 の 実行したい作業	籠を入力してくた	さい		
18	• :	×	√ f _x ID=	=gene:L(00C260 <u>-</u>	_1000	10;	;Name=dnaA;biotyp	e=protein_	_coding;descr	LOOC260_100010	2
			rep	lication	initiatior	n prot	ein	n DnaA;gene_id=LO	DC260_10	010;logic_nar	LOOC260_100020	5
	А	В	С	D	Е	FG	Н		К	L	LOOC260_100030	3
1	##gff-version	3									LOOC260 100040	0
2	##sequence-	regio ild Ei	on Chromo	some	360 22	2778 bive	353 A	SM82030v1			 LOOC260 100050	0
4	#!genome-vei	rsion	GCA 0008	329395	5.1	inve		51010293901			 LOOC260_100060	0
5	#!genome-da	te 20)14-11									0
6	#!genome-bu	ild-a	ccession G	CA_00	08293	395.	L				2000200_100070	
(#!genebuild-l	ast-i	ip Ced 20	14-11	1070		_		2000 10	0010.N		
ð	Chromosome	ena	gene	360	1070	. +	•	ID=genp:LOOC	200_10	0010;Nam	e=dnaA;blotype=protein	
9 10	Chromosome	ena ena	exon	360	1676	. +	•	Parent=transcript:	ript:BAP	81;Parent= 984581:Nai	LOOC260_122680	0
11	Chromosome	ena	CDS	360	1676	. +		ID=CDS:BAP8	4581;Pa	rent=trans	LOOC260_122690	0
12	###										no feature	0
13	Chromosome	ena	gene	1852	2991	. +	•	ID=gene:LOOC	260_10	0020;Nam		1
14	Chromosome	ena	transcript	1852	2991	. +	•	ID=transcript:	3AP845	82;Parent=		1
15	Chromosome	ena	exon	1852	2991	. +		Parent=transc	ript:BAF	v84582;IVai	too_low_aQual	0
10	hoae	ena	(+)	1032	2991	. +	0	ID-CD3.DAP0	+J0Z,Fd		not_aligned	0
準備	<u></u> 記了		<u> </u>								alignment_not_unique	0

	- Ale 19								<mark>単に3</mark>	単に③gene_idから始まる文字列だと、③gene_id						
	区切	り	文字	!;7	ご分	<u>}</u>	主口	削	<mark>以降の</mark> が、例	文字列 えば③g	を全部扣 ene_id=7	由出してしまうことになる から④区切り文字;まで	る。 の文			
	自動保存 💿 🎵 🚆	ۍ .	¢			h	oge.	.gff3	₃ ↓ <mark>♀列を</mark>	抽出す	れば(1)0	の部分のみを抽出できる	5.			
ידר	イル ホーム 挿入	~ ~	ージ レイアウト	数式	データ	校閲		菞	京 🛛 実行したい作業	を入力してください	,1					
12	- :	× 、	f _x ID=	=gene:L(00C260	10	001	0:N	lame=dnaA:biotype	=protein co	oding:descr	LOOC260 100010	2			
10			rep	lication	initiatior	- 10 1 pr	ote	ein D	DnaA:gene id=LOO	C260 1000	10:logic nar		5			
												1000200_100020	5			
	A	В	С	D	E	F	G	H		K		LOOC260_100030	3			
1	##gff-version	3										LOOC260 100040	0			
2	##sequence-	regio	n Chromo	some	360 22	277	85	53					0			
3	#!genome-build European Nucleotide Archive ASM82939v1															
4	#!genome-version GCA_000829395.1 LOOC260_100060 0												0			
5	#!genome-da	te 20	14-11									LOOC260 100070	0			
6	#!genome-bu	ild-a	ccession G	CA_00	08293	395	.1						-			
1	#!genebuild-la	ast-ù	Ted 20	14-11	4.070					0.0.0.1.0.0						
8	Chromosome	ena	gene	360	1676	•	+.	. Li	D=genE:LOOC	260_1000	010;Nam	e=dnaA;biotype=protein				
9	Chromosome	ena	transcript	360	1676	•	+.	.	D=transcript:B	AP84581	l;Parent=	1000260 122680	0			
10	Chromosome	ena	exon	360	1676	•	+.	. ŀ	Parent=transcr	ipt:BAP8	4581;Nai		~			
11	Chromosome	ena	CDS	360	1676	•	+	0 1	D=CDS:BAP84	581;Pare	ent=trans	LOOC260_122690	0			
12	###			1050	0001					0.00 1.00		no_feature	0			
13	Chromosome	ena	gene	1852	2991	•	+.	. !	D=gene:LOOC	260_1000	020;Nam	ambiguous	1			
14	Chromosome	ena	transcript	1852	2991	•	+.	. !	D=transcript:B	AP84582	2;Parent=		1			
15	Chromosome	ena	exon	1852	2991	•	+.	. 1	Parent=transcr	IDT:BAP8	4582;Nai	too_low_aQual	0			
16	Chromosome	ena	CDS	1852	2991	•	+	UI	D=CDS:BAP84	582;Pare	ent=trans	not aligned	0			
準備	noge 完了		(+)							4		alignment_not_unique	0			

								このあ	たりは、	例えばa	awkコマンド(スライド22)	あた
	区切	り	文字	!;7	ご分	×Ę	Ęļ	り)を用 略を経	いて、 験上知	<mark>区切り文</mark> っていれ	字;で文字列を分割する 」ば、おそらく内部的にそ	5戦 その
[自動保存 💽 🗾 🚆	€ ,-	⊘∓		-	hog	e.gf	ff3 f ようなこ	とをや	っている	のだろうと想像がつく。	
יד	イル ホーム 挿入	< ~	ページ レイアウト	数式	データ 相	閲	表	気 の 実行したい作業	を入力してくださ	L1		
18	▼ : :	×	√ <i>f</i> _× ID=	=gene:L(OOC260_	1000	10;	Name=dnaA;biotype	=protein_c	oding;descr	LOOC260_100010	2
			rep	lication	initiation	prot	ein	DnaA;gene_id=LOO	C260_1000	10;logic_nar	LOOC260 100020	5
	А	В	С	D	Е	FG	Н	3	к	4	 LOOC260 100030	3
1	##gff-version	3										0
2	##sequence-	regio	n Chromo	some	360 22	778	53	3			2000200_100040	0
3	#!genome-bu	ild Ei	uropean Ni	ucleoti	de Arcl	hive	A	SM82939v1			LOOC260_100050	0
4	#!genome-vei	rsion	GCA_0008	329395	5.1						LOOC260 100060	0
5	#!genome-da	te 20)14-11									0
6	#!genome-bu	ild-a	ccession G	CA_00	08293	95.1	L				1000200_100070	0
7	#!genebuild-la	ast-i	12 ced 20	14-11								
8	Chromosome	ena	gene	360	1676	. +		ID=gene:LOOC2	260_100	010;Nam	e=dnaA;biotype=proteir	
9	Chromosome	ena	transcript	360	1676	. +		ID=transcript:B	AP84581	l;Parent=	annor 000260 100010	
10	Chromosome	ena	exon	360	1676	. +		Parent=transcr	ipt:BAP8	4581;Nai	122080	0
11	Chromosome	ena	CDS	360	1676	. +	0	ID=CDS:BAP84	581;Pare	ent=trans	LOOC260_122690	0
12	###										no feature	0
13	Chromosome	ena	gene	1852	2991	. +		ID=gene:LOOC2	260_100	020;Nam		
14	Chromosome	ena	transcript	1852	2991	. +		ID=transcript:B	AP84582	2;Parent=	ambiguous	1
15	Chromosome	ena	exon	1852	2991	. +		Parent=transcr	ipt:BAP8	4582;Nai	too_low_aQual	0
16	Chromosome	ena	CDS	1852	2991	. +	0	ID=CDS:BAP84	582;Pare	ent=trans	not aligned	0
	hoge		(+)						•		alignment net unique	0
準備	完了										alignment_not_unique	U

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

exonレベルのカウントデー	-

	exor	าป	バノ	LO.)ナ) 		ン	' ト	・デー	ータ	得した exon_	<mark>とい場合</mark> idをオフ	<mark>は、①</mark> ション) <mark>exonと(</mark> として与	2) え
	自動保存 💿 ヵフ	E	¢~ ∓			ł	ioge.	gff3	• 保祥	存しました		ばよし	いだろう	と想像	<mark>し、実践</mark>	す
ファ	イル ホーム 揖	詠 ∕	ページ レイアウト	数式	データ	校閲	1	表示	∕⊃実	行したい作業を	えカしてください	1			Ŀ #	共有
11	0 -	×	✓ <i>f</i> _x Pa 1;0	arent=tra constitut	nscript:l ive=1;er	BAF	-84 mbl	581;Nam _end_pl	ie=Bi nase=	AP84581- =0;ensemb	l_phase=0	;exon_id=	BAP84581	-1;rank=1	;version=1	^
	А	В	С	D	E	F	G	н		J	К	2	M	N	0	
1	##gff-versio	n 3														1
2	##sequence	-regio	on Chrom	osome	360 2	27	785	53								
3	#!genome-b	uild E	uropean N	ucleot	ide Arc	hi	ve	ASM82	293	9v1						
4	#!genome-v	ersior	1 GCA_000	82939	5.1											
5	#!genome-d	ate 2	014-11													
6	#!genome-b	uild-a	ccession (GCA_0	08293	395	5.1									1
7	#!genebuild	-last-	updated 20	014-11												
8	Chromosom	e ena	gene	360	1676		+.	ID=	gene	e:LOOC2	60_1000)10;Nan	ne=dnaA	;biotype	e=proteir	n
9	Chromosom	e ena		t 360	1676		+.	ID=	tran	script:B/	AP84581	;Parent	t=gene:L	OOC260)_10001(Q
10	Chromosom	e ena	exon	360	1676		+.	Pare	ent=	transcri	pt:BAP84	4581;Na	ame=BA	P84581	-1;consti	il –
11	Chromosom	e ena	CDS	360	1676		+	0 ID=	CDS	BAP84	581;Pare	nt=trar	nscript:B	AP8458	1;protein	1
12	###															
13	Chromosom	e ena	gene	1852	2991		+.	ID=	gene	e:LOOC2	260_1000)20;Nar	ne=dnaN	l;biotype	e=protei	r
14	Chromosom	e ena	transcript	t 1852	2991		+ .	ID=	tran	script:B/	AP84582	;Parent	t=gene:L	OOC260)_10002(0
15	Chromosom	e ena	exon	1852	2991		+.	Pare	ent=	⁼transcri	pt:BAP84	4582;Na	ame=BA	P84582	-1;consti	it
16	Chromosom	e ena	CDS	1852	2991		+	0 ID=	CDS	BAP84	582;Pare	nt=trar	nscript:B	AP8458	2;protein	1 🖵
	< → hog	e	+							:	•					•
集係	 龍完了	_											I II	- I-	+ 1009	%

exonレベルのカウントデータを取

exonレベルのカウント^{- 得するやり方。②exonと③exon_idをオプション}

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーショ

①例題3が、exonレベルのカウントデータを取 として与えて実行した④2,262 exonsからなる (5)出力ファイル(output GFF3 exon.txt)が…

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 [QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ |は、Bowtieをデフォルトオブションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。 マップされる側のファイルは、 Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gtf)は、「イントロー |ファイル形式の変換|GFF3 --> GTF」の例題1で作成したものです。また、sample RNAseq4_3b6c652a602a.bamも長いので、hoge.bamとして取

1. GFF3でgeneレベルのカウントデータを取得する場合:

り扱います。

アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のgeneでレベル指定、9列目のgene idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(hoge.bam)なので-f bamとしています(SAMの場合は sam)。出力 ファイルはoutput GFF3 gene.txtです。2,194 genesですね。

htseq-count -t gene -i gene id -f bam hoge.bam hoge.gff3 > output GFF3 gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定、9列目のtranscript idでfeature IDを指 定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bamとしています(SAMの場 合はsam)。出力ファイルはoutput GFF3 transcript.txtです。2.250 transcriptsですね。

htseq-count -t transcript -i transcript id -f bam hoge.bam hoge.gff3 > output GFF3 transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。 noge.gff3の3列目の exonでレベル指定、9列目の exon idでfeature IDを指定 (exon idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(hoge bam)なので-f bamとしています(SAMの場合は sam)。出力ファイゼ (2) いt く (3) m.txtです。2,262 exonsですね。

これ(output_GFF3_exon.txt)。①最初の7行と、 ②最後の7行。③が2,262行目に相当します。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

	e-end ゲノム アノ を利用します。これ	
は、 <u>Bowtie</u> をデフォルトオブションで実行したものです。 マップする側のファイルは、 <u>サンプルデータ</u> 47のFASTA形式クァイル (sample_RNAseo4.fa)です。 マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの n	BAP84581-1	2
ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。	BAP84582-1	5
対応するGFF3形式のアフテーションファイルは <u>Lactobacillus nokkaidonensis jcm 18401.GCA 000829395.1.30.chromosom</u> ですが、ファイル名が長いと見づらいので、 <u>hoge.gff3</u> として取り扱います。対応するGTF形式のアフテーションファイル(<u>hog</u> ファイル形式の変換 GFF3> GTF1の例題1で作成したものです。また_sample_RNAseo4_3b6c652a602a bamも長いので	BAP84583-1	3
りが 1,00,000 (0,00,000,000,000,000,000,000,00	BAP84584-1	0
1.GFF3でgeneレベルのカウントデータを取得する場合:	BAP84585-1	0
アノテーションファイルがGFF3形式であるという前提です。 <u>hoge.gff3</u> の3列目のgeneでレベル指定、9列目のgene_idでfeat (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f <u>bam</u> としています(SAMの	BAP84586-1	0
JP1 Maoutput GFF3 gene.txt C9 . 2,194 genes C9 /J.	BAP8/587-1	0
<pre>htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt</pre>	DAI 04307 1	0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2.GFF3でtranscriptレベルのカウントデータを取得する場合:		0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定 9列目のtranscriptで	LOOC260_116770-1	0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定、9列目のtranslipt定(transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f ban(3) 合はsam)。出力ファイルはoutput_GFF3_transcript txtです。2.250 transcriptsですね。	LOOC260_116770-1 LOOC260_121590-1	0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定 9列目のtranscript 定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bam 合は sam)。出力ファイルは output GFF3 transcript txtです。2,250 transcriptsですね。 htseq-count -t transcript -i transcript id -f bam hoge.bam hoge.gff3 > output GFF3 transcript	LOOC260_116770-1 LOOC260_121590-1 no_feature	0 0 0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定、9列目のtrans 定 (transcript_idの代わりにDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f ban 合は sam)。出力ファイルはoutput GFF3 transcript.txtです。2,250 transcriptsですね。 htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript	LOOC260_116770-1 LOOC260_121590-1 no_feature ambiguous	0 0 0 1
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2 2. GFF3でtranscriptレベルのカウントデータを取得する場合: 2 アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定 9列目のtranscriptでし、北指定 9列目のtranscriptではの代わりにDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bam 3 3 合はsam)。出力ファイルはoutput GFF3 transcripttxtです。2,250 transcriptsですね。 3 htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript 3 3. GFF3でexonレベルのカウントデータを取得する場合: 3	LOOC260_116770-1 LOOC260_121590-1 no_feature ambiguous too_low_aQual	0 0 0 1 0
htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定、9列目のtranscriptでしたい指定、9列目のtranscriptではの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bam 合はsam)。出力ファイルはoutput GFF3 transcripttxtです。2,250 transcriptsですね。 htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript 3. GFF3でexonレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のexonでレベル指定、9列目のexon_idでfeat	LOOC260_116770-1 LOOC260_121590-1 no_feature ambiguous too_low_aQual not_aligned	0 0 0 1 0 0

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

	課題	1							htseq- のカウ ンを示	countプ ントデー すべく、	<mark>ログラ</mark> タを得 ①下線	ムを用し たい場つ 部分の	いて、tra 合に入り 空欄を切	nscript りするオ 里めよ。	レベ -プ: 但	いた ショ
در ا			╯♂╯ ╤	物式	デ_ ね	hoọ _{松明}	ge.gfi ≢	f3 . ≔∓ 0	マッピン	ング結果 GFF3形	えはBAI え、出	Mファイ. カファィ	ル、アノ ⁻ (ル名は	テーショ u.txtとで	いて	ファ
19	A A A	× /	✓ <i>f</i> ∗ ID= 1;b	=transcr iotype=	ipt:BAP8 protein_	34581 codir	₽ L;Pa ng;tr	rent=gen anscript	e:LOOC26 _id=BAP84	60_100010;N 4581;versior	lame=dna	A-			Â	<u> </u>
	А	В	С	D	Е	FG	H	1	J	к	L	М	N	0		
1	##gff-versi	on 3													11	
2	##sequenc	e-regio	on Chromo	some	360 22	277	853									
3	#!geneme_	سناط ٦	uronoon Nu	<u>i alaati</u>	do Aro	سنط	<u>^</u>	0.000	201						-	
4	#!ge htse	d-co.	unt -t _				i _			-f ban	ι hog∈	e.bam h	noge.g	ff3 >	u.	txt
5	#!genome-	late 2	014-11													
6	#!genome-l	ouild-a	ccession G	CA 00	008293	395.	1								-	
7	#!genebuild	-last-	updated 20	14-11											-	
8	Chromoson	ie er a	gene	360	1676	. +		ID=ge	ne:LOO	C260 100	0010;Na	me=dna	A;biotype	e=protei	n	
9	Chromoson	ne e	transcript	360	1676	. +	• .	ID=tra	rscript:	BAP8458	31;Parer	nt=gene:	LOOC260	10001	C	
10	Chromoson	ne er a	exon	360	1676	. +	'	Parent	t=transo	cript:BAP	84581:N	lame=B/	AP84581	-1:const	it	
11	Chromoson	ne ena	CDS	360	1676	. +	- 0	ID=CD	S:BAP8	4581;Pai	rent=tra	nscript:E	3AP8458	1;proteir	n	
12	###											· · ·				
13	Chromoson	ne ena	gene	1852	2991	. +	· .	ID=ge	ne:LOO	C260 100	0020;Na	me=dna	N;biotype	e=protei	r	
14	Chromoson	ne ena	transcript	1852	2991	. +	• .	ID=tra	inscript:	BAP8458	32:Parer	nt=gene:	LOOC260	0 10002	d	
15	Chromoson	ne ena	exon	1852	2991	. +		Parent	t=transo	cript:BAP	84582:	lame=B/	AP84582	-1:const	it	
16	Chromoson	ne ena	CDS	1852	2991	. +	- 0	ID=CD	S:BAP8	4582:Pai	rent=tra	inscript:E	BAP8458	2:proteir		
	< → ho	je	+				_									
準備	 睆了													+ 100	%	

	課是	<u>頁</u>	2						htseq-countプログラムを用いて、CDSレベルのカウ ントデータを得たい場合に入力するオプションを示 すべく、①下線部分の空欄を埋めよ。但し、マッピン							カウ 示 ピン				
-	自動保存 🦲 大ጋ		€ -	¢ - ∓	wi n	_	ho	ge.	.gff3	グァ	結果に	tSAM	フ _フ 形	ァイル(デール	hoge לכולי	.sar ≂∡	m)、アノ 「ルタけ	'テー 'k + v+	ショ: レオ	ンフス
ידר	'1µ ⊼−∆	挿人	. ~	ージレイアウト	数 式 :	テータ	<u> </u>		表示		17016		12							
11	1 The second sec																			
	А		В	С	D	Е	F (G	н		J	к		L	N	1	N	0		•
1	##gff-vers	sion	3					T												
2	##sequen	ce-r	regio	n Chromo	some	360 22	277	85	53											
3	#!geneme	hui	ואבי	woooon Nu		do Are	بينط	~	10110	202	01									
4	#!ge hts	eq-	col	int -t _	•	i						f		hoge	.san	n h	oge.g:	ff3	> k	.txt
5	#!genome	-dat	te 20)14-11					41					•						
6	#!genome	-bui	ld-a	ccession G	CA 0	08293	395	.1												
7	#!genebui	ld-la	ast-i	updated 20	14-11															
8	Chromoso	ome	ena	gene	360	1676		+ .	. ID=	gen	e:LOOC	260_1	000	010;Na	me=d	InaA	;biotype	=prot	tein	
9	Chromoso	ome	ena	transcript	360	1676		F.	. ID=	tran	script:E	3AP84	581	l;Paren	t=ger	ne:L	.00C260	_100	010	
10	Chromoso	ome	er a	exon	360	1676		+	. Par	ent=	-transc	ript:BA	P8	4581;N	ame=	=BA	P84581-	-1;con	stit	
11	Chromoso	me	e	CDS	360	1676		F	0 ID=	CDS	:BAP84	4581;P	are	ent=tra	nscrip	ot:B	AP8458	1;prot	ein	
12	###		7																	
13	Chromoso	me	ena	gene	1852	2991		F.	. ID=	gen	e:LOOC	260_1	000	020;Na	me=d	lnaN	l;biotype	epro	teir	
14	Chromoso	ome	ena	transcript	1852	2991		+	. ID=	tran	script:E	3AP84	582	2;Paren	t=ger	ne:L	.00C260	_100	020	
15	Chromoso	me	ena	exon	1852	2991		F.	. Par	ent=	transc=	ript:BA	P8	4582;N	ame=	=BA	P84582-	-1;con	stit	
16	Chromoso	ome	ena	CDS	1852	2991		ł	0 ID=	CDS	S:BAP84	4582;P	are	ent=tra	nscrip	ot:B	AP84582	2;prot	ein 🗸	•
	< > I	noge		+								•							•	
準備	記了																-	-+ 1	100%	1

課題2で得られる出力ファイル①k.txtにおいて、1列 目のfeature IDはマッピング結果ファイルの種類(SAMまたはBAM)とは②k.txtの最初の2行分の feature IDを示すべく、下線部分の空欄を埋めよ。

htseq-count -ti	hoge.sam hoge.gff3 > k.txt
	2 k.txt の場合: ↓ 1 行目が 2 行目が

課題1~3のヒント

課題1~3についてはhoge.gff3 ファイルをみればわかります。

E	自動保存 💿 オフ) 🚪	•5 •	¢~ ∓			h	oge	e.gfi	f3 保	存しました		ታ	インイン	Ŧ	—		×
ファ	イル ホーム 挿り		ージ レイアウト	数式	データ	校閲]	表	示 2 実	行したい作業	を入力してくださ	เง				Ŕ	共有
111	· · ·	× 、	∫ f _≭ ID:	=CDS:BA	AP84581	;Pa	rer	nt=	transcript:	BAP84581;	;protein_id	=BAP8458	1				^
	А	В	С	D	Е	F	G	Н	I.	J	К	L	М	N		0	
1	##gff-version	3															
2	##sequence-	regio	n Chromo	osome	360 2	27	78	53									
3	#!genome-bu	ild Ei	uropean N	ucleoti	de Arc	chi	ve	AS	SM82939	9v1							
4	#!genome-ve	rsion	GCA_000	829395	5.1												
5	#!genome-da	te 20)14-11														
6	#!genome-bu	ild-a	ccession G	GCA_00	0829	395	5.1										
7	#!genebuild-l	ast-u	pdated 20)14-11													
8	Chromosome	ena	gene	360	1676	•	+		ID=gen	e:LOOC2	260_100	010;Nam	ie=dna/	A;biot	уре=	=prote	in
9	Chromosome	ena	transcript	360	1676		+	•	ID=tran	script:B	AP84583	1;Parent	=gene:l	_00C	260 <u>-</u>	_10001	LC
10	Chromosome	ena	exon	360	1676		+		Parent=	transcri	ipt:BAP8	84581;Na	me=BA	P845	81-1	l;cons	tit
11	Chromosome	ena	CDS	360	1676		+	0	ID=CDS	:BAP84	581;Pare	ent=tran	script:B	AP84	581	;protei	n
12	###																
13	Chromosome	ena	gene	1852	2991		+		ID=gen	e:LOOC2	260_100	020;Nam	ie=dnal	N;biot	ype	=prote	ir
14	Chromosome	ena	transcript	1852	2991		+		ID=tran	script:B	AP84582	2;Parent	=gene:l	_00C	260_	_10002	20
15	Chromosome	ena	exon	1852	2991		+		Parent=	⁼transcri	ipt:BAP8	84582;Na	me=BA	P845	82-3	l;cons	tit
16	Chromosome	ena	CDS	1852	2991		+	0	ID=CDS	BAP84	582;Pare	ent=tran	script:E	AP84	582	;protei	n 🖵
	↔ hoge		÷							:	•						Þ
準備	院了												- 11			+ 10	0%

課題1~3のヒント

- マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) 🕧

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、<u>サンプルデータ</u>47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteria</u>から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gff)は、「イントロ | ファイル形式の変換 | GFF3 --> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bam</u>も長いので、hoge.bamとして取 り扱います。

1.GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定(transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力ファイルは<u>output GFF3 transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

htseq-countページのFAQ

一番下の、③のあたりにも情報あり。 _ × 523 0 http://htseq.readthedocs.io/en/release 0.10.0/count.html 検索... ب 0 - C 1. 平成30年06月12日 (PC使用) Counting reads in features ... × 講義資料PDF poonininoo. 11011, ootorar joaro iator, i nato ooon union would not be appropriate and hence tend to recommend to just stick to un (Rで)塩基配列解析 QuasR : Gaidatzis et al., Bioinformatics, 2015 I have a GTF file? How do I convert it to GFF? HTSeq : Anders et al., Bioinformatics, 2015 No need to do that, because GTF is a tightening of the GFF format. Hence, all are GFF files, too. By default, htseq-count expects a GTF file. hoge10.txt htseq-countのページ I have a GFF file, not a GTF file. How can I use it to count RNA-Seq reads? The GTF format specifies, inter alia, that exons are marked by the word exon in the third column and that the gene ID is given in an attribute named gene id, and htseq-count expects these words to be used by default. If you GFF file uses a word other than exon in its third column to mark lines describing exons, notify htseq-count using the --type option. If the name of the attribute containing the gene ID for exon lines is not gene id, use the --idattr. Often, its is, for example, Parent, GeneID or ID. Make sure it is the gene ID and not the exon ID. How can I count overlaps with features other than genes/exons? If you have GFF file listing your features, use it together with the --type and --idattr options. If your feature intervals need to be computed, you are probably better off writing your own counting script (provided you have some knowledge of Python). Follow the tutorial in the other pages of this documentation to see how to use HTSeg for this. How should I cite htseq-count in a publication? Please cite HTSeq as follows: S Anders, T P Pyl, W Huber: HTSeq — A Python framework to work with high-throughput sequencing data. bioRxiv 2014. doi: 10.1101/002824. (This is a preprint currently under review. We will replace this with the

🗇 v: release 0.10.0 🔻

previous | next | index

HTSeq 0.10.0 documentation »

© Copyright 2010, Simon Anders. Created using Sphinx 1.7.4.

reference to the final published version once available.)

応用スキルの習得や課題関連の事

柄については、①htseq-countの、②

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

課題4のイントロ

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、<u>サンプルデータ</u>47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteria</u>から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.chromosome.gf3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gff)は、「イントロ | ファイル形式の変換 | GFF3 --> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bamも長いので、hoge.bamとして取 り扱います。

1.GFF3でgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力ファイルは<u>output GFF3 transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

1をBio-Linux上で実行

①が実行コマンド。 課題4のイントロ マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders 2015) NEW HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 [QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ |は、Bowtieをデフォルトオブションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ファイル (sample RNAseq4.fa)です。 マップされる側のファイルは、 Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa)です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、 ファイル 名が長いと見づらいので、 hoge.gff3として取り扱います。 対応する GTF形式の アノテーションファイル (hoge1.gtf)は、「イントロ |ファイル形式の変換 | GFF3 --> GTF iu@bielinux[~/Desktop/mac_share] 📧 🜒) 16:09 🔱 Ťι. Ja り扱います。 iu@bielinux[mac share] pwd [4:08午後] 1. GFF3でgeneレベルのカウントデ・ 0 /home/iu/Desktop/mac share アノテーションファイルがGFF3形式 iu@bielinux[mac share] ls [4:08午後] (gene idの代わりにIDでもOK)して hogel.gtf hoge.bam hoge.gff3 ファイルはoutput GFF3 gene.txtで iu@bielinux[mac share] htseq-count -t gene -i gene id -f bam hoge.b htseq-count -t gene -i ge am hoge.gff3 > output GFF3 gene.txt 8980 GFF lines processed. 11 SAM alignments processed. 2. GFF3でtranscriptレベルのカウン iu@bielinux[mac share] [4:09午後] アノテーションファイルがGFF3形式 定 (transcript idの代わりにIDやPa 合はsam)。出力ファイルはoutput htseq-count -t transcript 3. GFF3でexonレベルのカウントディ アノテーションファイルがGFF3形式 (exon idの代わりにParentやName sam)。出力ファイルはoutput GFF

	①が実行コマンド。②のような実	行口	ブが表示
課題4のイントロ	されて、エラーを吐くことなく無事	終了	します。
■ マップ後 カウント情報取得 single-end ゲノム アノテーシ	'ヨン有 HTSeq(Anders_2015) <mark>NEW</mark>		
HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「 テーション有 QuasR(Gaidatzis 2015)」の例題10を実行して得られたマッピング結果(samp は、 <u>Bowtie</u> をデフォルトオプションで実行したものです。マップする側のファイルは、 <u>サンプ</u> (sample RNAseq4.fa)です。マップされる側のファイルは、 <u>Ensembl Bacteria</u> から提供されて ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chr 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.G ですが、ファイル名が長いと見づらいので、 <u>hoge.gff3</u> として取り扱います。対応するGTF用	マップ後 カウント情報取得 single-end ゲノム アノ ole RNAseq4 3b6c652a602a.bam)を利用します。これ ルデータ47のFASTA形式ファイル いる Lactobacillus casei 12Aの multi-FASTA形式ゲ omosome.Chromosome.fa)です。 GCA 000829395.1.30.chromosome.Chromosome.gff3 形式のアノテーションファイル(hoge1.gtf)は、「イントロ		
ファイル形式の変換 GFF3> GTF り扱います。	a Ja		♠)) 16:09 🔱
1. GFF3でgeneレベルのカウントデ・ iu@bielinux[mac_share] p	bwd	[4	:08午後]
アノテーションファイルがGFF3形式 (gene_idの代わりにIDでもOK)して ファイルはoutput GFF3 gene.txtで 一 hogel.gtf hoge.bam hog	ls ge.gff3	[4	:08午後]
<pre>htseq-count -t gene -i ge htseq-count -t gene -i ge htseq-count -t gene -i ge am hoge.gff3 > output_GF 8980 GFF lines processed </pre>	<pre>htseq-count -t gene -i gene_id FF3_gene.txt d. 2</pre>	-fba	am hoge.b
2. GFF3でtranscriptレベルのカウン アノテーションファイルがGFF3形式 定(transcript_idの代わりにIDやP: 合はsam)。出力ファイルはoutput	esseu.	[4	:09午後]
htseq-count -t transcript			
アノテーションファイルがGFF3形式 (exon_idの代わりにParentやName sam)。出力ファイルはoutput GFF			

	①出力ファイル(output_GFF3_gene.txt)の
121月10イントロ	最初の5行分を表示。妥当な結果ですね。
□ □ ∩ へ へ □ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ	7 HTSeq(Anders_2015) NEW
ー HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 テーション有 <u>QuasR(Gaidatzis 2015)</u> 」の例題10を実行して得られたマッビング結果(<u>sample RNA</u> は、 <u>Bowtie</u> をデフォルトオプションで実行したものです。マップする側のファイルは、 <u>サンプルデータ</u> (<u>sample RNAseq4.fa</u>)です。マップされる側のファイルは、 <u>Ensembl Bacteria</u> から提供されている La	き カウント情報取得 single-end ゲノム アノ <u>Aseq4_3b6c652a602a.bam</u>)を利用します。これ タ47のFASTA形式ファイル actobacillus casei 12Aの multi-FASTA形式ゲ
ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosom 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のア ファイル形式の変換しGFF3> GTFLの分類ですが、またのですが、またのです。	<u>ne.Chromosome.fa</u>) です。 0 <u>0829395.1.30.chromosome.Chromosome.gff3</u> マノテーションファイル (<u>hoge1.gtf</u>)は、「イントロ」
り扱います。 してFF3でgenel/ベルのカウントデ、「「」 iu@bielinux[~/Desktop/mac_share] iu@bielinux[mac_share] pwd	
アノテーションファイルがGFF3形式 (gene_idの代わりにDでもOK)して ファイルはoutput GFF3 gene.txtで phoge1.gtf hoge.bam hoge.gf	[4:20午後]
<pre>htseq-count -t gene -i ge am hoge.gff3 > output_GFF3_g 8980 GFF lines processed.</pre>	q-count -t gene -i gene_id -f bam hoge.b gene.txt
2. GFF3でtranscriptレベルのカウン アノテーションファイルがGFF3形式 定(transcript_idの代わりにDやP 合はsam)。出力ファイルはoutput	i. -n 5 output_GFF3_gene.txt [4:20午後]
htseq-count -t transcript LOOC260_100030 3 LOOC260_100040 0 LOOC260_100050 0	
3. GFF3でexonレベルのカウントデ アノテーションファイルがGFF3形式 (exon_idの代わりにParentやName sam)。出力ファイルはoutput GFF	[4:21午後]

-i IDでもOK

①でも書いているように、②の部 分を-i IDとしてもうまく動きます。

マップ後 | カウント情報取得 | single-end | ゲノム | アノテーション有 | HTSeq(Anders_2015) NEW

HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 | カウント情報取得 | single-end | ゲノム | アノ テーション有 | QuasR(Gaidatzis 2015)] の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602a.bam)を利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、<u>サンプルデータ</u>47のFASTA形式ファイル (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteria</u>から提供されている Lactobacillus casei 12Aの multi-FASTA形式ゲ ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。 対応するGFF3形式のアノテーションファイルはLactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.chromosome.Chromosome.gff3 ですが、ファイル名が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gff)は、「イントロ | ファイル形式の変換 | GFF3 -> GTF」の例題1で作成したものです。また、sample RNAseq4 3b6c652a602a.bamも長いので、hoge.bamとして取

1. GFF3でgeneレベルのカウントデータを取得する場合:

り扱います。

アノテーションファイン・GFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のgeneでレベル指定、9列目のgene_idでfeature IDを指定 (gene_idの代わりにIDでもOK)しています。マッビング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合はsam)。出力 ファイルは<u>output GFF3 gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt

2. GFF3でtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは <u>output_GFF3_transcript.txt</u>です。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge.gff3 > output_GFF3_transcript.txt

3. GFF3でexonレベルのカウントデータを取得する場合:

アノテーションファイルがGFF3形式であるという前提です。<u>hoge.gff3</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentやNameでもOK)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしています(SAMの場合は sam)。出力ファイルは<u>output GFF3 exon.txt</u>です。2,262 exonsですね。

-i IDでもOK

①でも書いているように、②の部 分を-i IDとしてもうまく動きます。

	マップ後	カウント情報	取得	single-end ゲノム アノテーション有 HTSeq(Anders_2015) NEW	
田テは (3) 力対	<u>(Seq</u> というPytha ーション有 Qu 、 <u>Bowtie</u> をデフ 、 <u>mple RNAseq</u> ム配列ファイル(応するGFF3形	onプログラムを用い <u>asR(Gaidatzis 2015</u> ォルトオブションで調 <u>4.fa</u>)です。マップさ (<u>Lactobacillus hokk</u> 式のアノテーション)	てカウント)」の例題 創行したも(れる側のフ caidonensis ファイルは	情報を得るやり方を示します。 ここでは、「マッブ後 カウント情報取得 single-end ゲノム アノ 10を実行して得られたマッピング結果(<u>sample RNAseq4 3b6c652a602a.bam</u>)を利用します。 これ Dです。 マップする側のファイルは、 <u>サンブルデータ</u> 47の FASTA形式ファイル 「アイルは、 <u>Ensembl Bacteria</u> から提供されている <u>Lactobacillus casei 12A</u> の multi-FASTA形式ゲ jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa) です。	
で	すが、ファイル マイルギギの恋	名が長いと見づらい	いので、 <u>ho</u> g	e.gff2として取り扱います。対応するGTF形式のアノテーションファイル(hoge1.gtf)は、「イントロ」	
5	パイルル式の多 扱います。	(# <u>Grrs Gir</u>	iu@bieli	nux[~/Desktop/mac_share]	📧 🕪) 16:24 😃
1.	GFF3でgeneレ	ベルのカウントディ	Ø	<pre>iu@bielinux[mac_share] pwd /home/iu/Desktop/mac_share</pre>	[4:24午後]
(アノテーションフ [<mark>gene_id</mark> の代わ ファイルはoutpu	アイン GFF3形式 りにDでもOK)して t GFF3 gene.txtで		<pre>iu@bielinux[mac_share] ls hogel.gtf hoge.bam hoge.gff3</pre>	[4:24午後]
	htseq-count	-t gene -i ge		<pre>iu@bielinux[mac_share] htseq-count -t gene -i ID -f ba ge_gff3 > output GEE3 gene tyt</pre>	am hoge.bam ho
				8980 GFF lines processed.	
2.	GFF3 ⁷ Ctransc	riptレベルのカウン		11 SAM alignments processed.	
1	ァノテーションフ 定(transcript_ic	ァイルがGFF3形式 1の代わりにIDやPa	\leq	iu@bielinux[mac_share]	[4:24午後]
î	ゴはsam)。出フ htseq-count	-t transcript			
	-				
3.	GFF3でexonレ	ベルのカウントデ			
(S	ァノテーションフ (<mark>exon_id</mark> の代わ am)。出力ファ·	アイルがGFF3形式 りりにParentやName イルはoutput GFF1	Z		1
	,				
	①でも書いているように、②の部				
--	--				
-i IDでもOK	分を−i IDとしてもうまく動きます。 ③妥当な結果ですね。				
マップ後 カウント情報取得 single-end ゲノム アノテーション有 HTSeq(A	Anders_2015) NEW				
HTSeqというPythonブログラムを用いてカウント情報を得るやり方を示します。ここでは、「マッブ後 カウント情報 テーション有 <u>QuasR(Gaidatzis 2015)</u>] の例題10を実行して得られたマッピング結果(<u>sample RNAseq4 3b6c652a</u> は、 <u>Bowtie</u> をデフォルトオプションで実行したものです。マップする側のファイルは、 <u>サンプルデータ47のFASTA形</u> (<u>sample RNAseq4.fa</u>)です。マップされる側のファイルは、 <u>Ensembl Bacteria</u> から提供されている <u>Lactobacillus case</u> ノム配列ファイル(<u>Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.</u> 対応するGFF3形式のアノテーションファイルは <u>Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dra</u> ですが、ファイル名が長いと見づらいので、 <u>hoge.gff3</u> として取り扱います。対応するGTF形式のアノテーションファ	取得 single-end ゲノム アノ a <u>602a.bam</u>)を利用します。これ ジ式ファイル ei 12Aの multi-FASTA形式ゲ <u>fa</u>) です。 hromosome.Chromosome.gff3 マイル (hoge1.gtf)は、「イントロ				
ファイル形式の変換 <u>GFF3> GTF</u> iu@bielinux[~/Desktop/mac_share]	t₁ Ja 📧 🕪) 16:25 🔱				
シ版により。 1 GFF3でgenel/ベルのカウントディーの「iu@bielinux[mac_share] pwd	[4:24午後]				
アノテーションファイン GFF3形式 (gene_idの代わりにDでもOK)して ファイルはoutput GFF3 gene.txtで mathematic hoge.bam hoge.gff3	[4:24午後]				
<pre>htseq-count -t gene -i ge iu@bielinux[mac_share] htseq-count -t ge.gff3 > output_GFF3_gene.txt 8980 GFF lines processed.</pre>	t gene <u>-i ID</u> -f bam hoge.bam ho				
2. GFF3でtranscriptレベルのカウン アノテーションファイルがGFF3形式 定(transcript_idの代わりにDやP: 合はsam)。出力ファイルはoutput のはないのです。 11 SAM alignments processed. iu@bielinux[mac_share] head -n 5 outp gene:L00C260_100010 2 gene:L00C260_100020 5	put_GFF3_gene.txt [4:24午後]				
htseq-count -t transcript gene:L00C260_100030 3 gene:L00C260_100040 0 gene:L00C260_100050 0					
3. GFF3でexonレベルのカウントデー iu@bielinux[mac share]	[4:25午後]				
アノテーションファイルがGFF3形式 (exon_idの代わりにParentやName sam)。出力ファイルは <u>output GFF</u>					

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

-i IDでもOK

①-i IDとして得られた結果の②feature IDが、-i gene_idの時と異なる理由は…

マップ後 カウント情報取得 single-end ゲノム アノテーション有 HTSeq(Anders_2015) NEW	
HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 カウント情報取得 single-end ゲノム アノ テーション有 <u>QuasR(Gaidatzis 2015)</u> 」の例題10を実行して得られたマッピング結果(<u>sample RNAseq4 3b6c652a602a.bam</u>)を利用します。これ は、 <u>Bowtie</u> をデフォルトオプションで実行したものです。マップする側のファイルは、 <u>サンプルデータ</u> 47のFASTA形式ファイル (<u>sample RNAseq4.fa</u>)です。マップされる側のファイルは、 <u>Ensembl Bacteria</u> から提供されている <u>Lactobacillus casei 12A</u> の multi-FASTA形式ゲ ノム配列ファイル(<u>Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna.chromosome.Chromosome.fa</u>)です。	
対応するGFF3形式のアノテーションファイルは <u>Lactobacillus_hokkaidonensis_tcm_18461.GCA_000829395.1.30.chromosome.Chromosome.gff3</u> ですが、ファイル名が長いと見づらいので、 <u>hoge.gff3</u> として取り扱います。対応するGTF形式のアノテーションファイル(<u>hoge1.gtf</u>)は、「イントロ	
ファイル形式の変換 <u>GFF3> GTF</u> iu@bielinux[~/Desktop/mac_share] 1 1 1	📧 🜒) 16:25 🔱
1. GFF3でgeneレベルのカウントデー iu@bielinux[mac_share] pwd	[4:24午後]
アノテーションファイルがGFF3形式 (gene_idの代わりにIDでもOK)して コーイルは	[4:24午後]
htseq-count -t gene -i ge [htseq-count -t gene -i ge [] [] [] [] [] [] [] [] [] [] [] [] [] [am hoge.bam ho
2. GFF3でtranscriptレベルのカウン 11 SAM alignments processed.	[A. DAケ 46]
アノテーションファイルかGFF3形式 定(transcript_idの代わりにIDやP: 合はsam)。出力ファイルは <u>output</u> gene:L00C260_100010 2 gene:L00C260_100020 5	[4:24十夜]
htseq-count -t transcript gene:L00C260_100030 3 2 gene:L00C260_100040 0 gene:L00C260_100050 0	
3. GFF3でexonレベルのカウントデー アノテーションファイルがGFF3形式	[4:25午後]
(exon_idの代わりにParentやName sam)。出力ファイルは <u>output GFF</u>	
<pre>htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt</pre>	110

①gene_idを指定した場合は②の情報 を抽出しているのに対し、③IDの場 -i IDでもOK 合は④の部分を抽出しているから。 hoge.gff3.xlsx - 保存しました 5-0-サインイン 雨 \times タ 実行したい作業を入力してください 12 共有 ページ レイアウト 表示 ファイル ホーム 挿入 数式 校問 ID=gene:LOOC260_100010;Name=dnaA;biotype=protein_coding;description=chromosomal f_{x} 18 Ŧ \times \checkmark protein DnaA;gene_id=LOOC260_100010;logic_name=ena;version=1 cation ir D FGH Μ Ν 0 В С ##gff-version 3 1 2 ##sequence-region Chromosome 360 2277853 #!genome-build European Nucleotide Archive ASM82939v1 3 #!genome-version GCA 000829395.1 4 #!genome-date 2014-11 5 #!genome-build-accession GCA 000829395.1 #!genebuild-last-updated 2014-11 360 1676 . + . ID=gene:LOOC260 100010;Name=dnaA;biotype=proteir 8 Chromosome ena gene Chromosome ena transcript 360 1676 . + . ID=transcript:BAP84581;Parent=gene:LOOC260 100010 9 10 Chromosome ena exon 360 1676 . + . Parent=transcript:BAP84581;Name=BAP84581-1;constit Chromosome ena CDS 360 1676 . + 0 ID=CDS:BAP84581;Parent=transcript:BAP84581;protein 11 12 ### 1852 2991 . + . ID=gene:LOOC260 100020;Name=dnaN;biotype=proteir 13 Chromosome ena gene +. ID=transcript:BAP84582;Parent=gene:LOOC260 100020 14 Chromosome ena transcript 1852 2991. 15 Chromosome ena exon 1852 2991 . + Parent=transcript:BAP84582;Name=BAP84582-1;consti 16 Chromosome ena CDS 1852 2991 . + 0 ID=CDS:BAP84582;Parent=transcript:BAP84582;protein hoge $(\mathbf{+})$ E 🔳 |►| 進備完了 四 + 100%

											①の	よう	なgene	e symb	ols Cfea	ature ID	を取
	gene) 5	symb	20	57	Ĩ	2	ジ ジ	たし	い!	扱え る機	れに 能解	ば、特に 解析(G	<mark>⊑gene</mark> s O解析1	symbols やPathw	をベージ vay解析	スとす i)時(
ן קר		•5 -		教式	データ	h 校問	ioge I	e.gfi 夫	f3.xlsx - 保 示 りョ	存しました 単行したい作員	便利 coun	。し tを	かし、(実行し [・]	2)−i Na てもうま	meとし ⁻ こくいきる	てhtseq ⁻ ません。	-
						17.04	,	1.									
18	▼ :	×	f _x ID=	gene:L	00C260	_10	00	10;	Name=dna	aA;biotyp	e=protei	n_co	ding;desc	ription=cl	hromosoma	al	^
			rep	lication	initiatio	n p	rote	ein	241	id=L00	DC260_1	0001	0;logic_na	ame=ena;\	version=1		
	А	В	С	D	Е	F	G	Н	1		K		L	М	N	0	
1	##gff-version	3															1
2	##sequence-	regio	n Chromo	some	360 22	27	78	53									-
3	#!genome-bu	ild E	uropean Nu	ucleoti	de Arc	hi	ve	AS	SM8293	9v1							~
4	#!genome-ve	rsion	GCA_0008	329395	5.1												~
5	#!genome-da	te 20)14-11														-
6	#!genome-bu	ild-a	ccession G	CA_00	08293	395	5.1										~
7	#!genebuild-l	ast-i	updated 20	14-11													~
8	Chromosome	ena	gene	360	1676		+		ID=gen	e:LOOC	260_1	000	10;Nan	ne=dna/	A;biotype	e=proteir	n
9	Chromosome	ena	transcript	360	1676		+		ID=trar	nscript:l	BAP84	581;	Parent	=gene:L	.00C260)_10001(d
10	Chromosome	ena	exon	360	1676		+		Parent=	=transc	ript:BA	NP84	1581;Na	ame=BA	P84581	-1;consti	it i
11	Chromosome	ena	CDS	360	1676		+	0	ID=CDS	S:BAP8	4581;P	areı	nt=tran	iscript:B	AP8458	1;protein	1
12	###																
13	Chromosome	ena	gene	1852	2991		+		ID=gen	e:LOOC	260_1	000	20;Nan	ne=dnaN	V;biotype	e=protei	r
14	Chromosome	ena	transcript	1852	2991		+		ID=trar	nscript:l	3AP84	582;	Parent	=gene:L	_OOC260)_10002(0
15	Chromosome	ena	exon	1852	2991		+		Parent=	=transc	ript:BA	P84	1582;Na	ame=BA	P84582	-1;consti	1
16	Chromosome	ena	CDS	1852	2991		+	0	ID=CDS	S:BAP8	4582;P	arei	nt=tran	script:B	AP8458	2;protein	1 -
	 → hoge 		+														>
準備	 龍完了] 🛄 🗕	-	+ 1009	%

■ <mark>④がエラーメッセージです。この中</mark>	④ ④がエラーメッセージです。この中にエラーの原						
■ ┳ ━━ ◀ ヽヽ + ァ ━━ ヽ こ	はしません。						
エノアフピーノ							
自動保存 • カ · ・ · · · · · hoge.gff3.xlsx - 保存しました サインイン 囨 -							
ファイル ホーム 挿入 ページレイアウト 数式 データ 校閲 表示 🖓 実行したい作業を入力してください	12 共有						
I8 ▼ ID=gene:LOOC260_100010;Name=dnaA;biotype=protein_coding;description=chromosom	al ^						
replication initiation protein 2: 1: =LOOC260_100010;logic_name=ena;version=1							
A B C D E F G H I J K L M N	0						
1 ##gff-version 3 iu@bielinux[~/Desktop/mac_share] 1 Ja	🔊 🔊) 16:26 🔱						
<pre>2 ##sequence-region [iu@bielinux[mac share] pwd</pre>	[4:25午後]						
3 #!genome-build Europ /home/iu/Desktop/mac_share							
4 #!genome-version GC iu@bielinux[mac_share] ls	[4:25午後]						
5 #!genome-date 2014- hoge1.gtf hoge.bam hoge.gff3							
6 #!genome-build-acce	bam hoge.bam						
<pre>7 #!genebuild-last-upda hoge.gff3 > output_GFF3_gene.txt</pre>							
8 Chromosome ena ger Error occured when processing GFF file (line 18 of fil	<pre>le hoge.gff3):</pre>						
9 Chromosome ena tra	e' attribute						
10 Chromosome ena exe [Exception type: ValueError, raised in count.py:53]							
11 Chromosome ena CD iu@bielinux[mac_share]	[4:26午後]						
12 ###							
13 Chromosome ena ger							
14 Chromosome ena tra							
15 Chromosome ena exc							
16 Chromosome ena CD							
hoge 🕂	1						
準備完了							

エラーの原因を探る

①hoge.gff3の、②18行目の記述内容を、③ 表示。ここを示す理由、わかりますよね。

Ē	自動保存 💽 72				ho	ge.g	,ff3. <mark>1</mark> -	Excel		ť	インイン	Ŧ	_		×		
יד	イル ホーム	挿入	ページ レイアウト	数式	データ	校閲		表	न् 🗸	実行したい作業	を入力してくださ	ίΩ				Ŀ	共有
I18 ID=gene:LOOC260_100030;biotype=protein_coding;description=S4-like RNA binding protein;gene_id=LOOC260_100030;logic_name=ena;version=1)	^					
	А	В	С	D	Е	F	G	н	1	J	К	L	М	N		0	
7	#!genebuild	l-last-	updated 2	2014-11													
8	Chromosor	ne ena	gene	360	1676		+	.	D=ger	ne:LOOC	260_100	010;Nan	ne=dna/	A;biot	уре	=prote	in
9	Chromosor	ne ena	a transcrip	ot 360	1676		+	.	D=tra	nscript:B	AP8458	1;Parent	=gene:L	_00C	260	_10001	10
10	Chromosor	ne ena	exon	360	1676	•	+	.	Parent	=transcr	ipt:BAP8	34581;Na	ame=BA	P845	81-	1;cons	tif
11	Chromosor	ne ena	a CDS	360	1676	•	+	0	D=CD	S:BAP84	581;Par	ent=trar	iscript:B	AP84	581	;prote	in
12	###																
13	Chromosor	ne ena	agene	1852	2991	•	+	.	D=ger	ie:LOOC	260_100	020;Nan	ne=dnal	N;biot	ype	=prote	eir
14	Chromosor	ne ena	a transcrip	ot 1852	2991	•	+	.	D=tra	nscript:B	AP8458	2;Parent	=gene:L	_00C	260	_10002	20
15	Chromosor	ne ena	a exon	1852	2991	•	+	.	Parent	=transcr	ipt:BAP8	34582;Na	ame=BA	P845	82-	1;cons	tit
16	Chromosor	ne ena	a CDS	1852	2991	•	+	0	P=CP	S:BAP84	582;Par	ent=trar	iscript:B	AP84	-582	;prote	in
17	###																
18	Chromosor	ne ena	a gene	3233	3457	•	+	. 🛛	D=ger	ie:LOOC	260_100	030;biot	ype=pro	otein_	cod	ing;des	SC
19	Chromosor	ne ena	transcrip	ot 3233	3457		+	.	D=tra	nscript:B	AP8458	3;Parent	=gene:L	_00C	260	_10003	30
20	Chromosor	ne ena	exon	3233	3457	•	+	.	Parent	=transcr	ipt:BAP8	34583;Na	ame=BA	P845	83-	1;cons	tif
21	Chromosor	ne ena	CDS	3233	3457	•	+	0	D=CD	S:BAP84	583;Par	ent=trar	script:B	AP84	583	;prote	in
22	###																-
	∢ → ho	ge	(\div)							1	4						Þ
準備	請 完了														-	+ 10	0%

	①-i Nameとして②htseq-countを実									
1111111111111111111111111111111111111	行してもうまくいかない理由について									
	述べよ。また、①のコマンドでっまく実									
自動保存 🕢 🚽 🕞 🕇 😴 🗧 🗧 👘 hoge.gff3.xlsx - 保存しました	行できるようにすればどうすればいい									
ファイル ホーム 挿入 ページレイアウト 数式 データ 校閲 表示 🔎 実行したい作業を入力し	か、自由に考え(戦略)を述べよ。									
IB	ein_coding;description=chromosomal									
replication initiation protein DnaA;gene_id=LOOC260_100010;logic_name=ena;version=1										
A B C D E E G H L L K										
1 ##gff-version 3 iu@bielinux[~/Desktop/mac_share]	t∎ Ja 💌 🕪) 16:26 ₹									
<pre>2 ##sequence-region [iu@bielinux[mac share] pwd</pre>	[4:25午後]									
3 #!genome-build Europ 🔇 /home/iu/Desktop/mac share										
4 #!genome-version GO iu@bielinux[mac share] ls	[4:25午後]									
5 #!genome-date 2014- mogel.gtf hoge.bam hoge.gff3										
<pre>6 #!genome-build-acce [] [] iu@bielinux[mac_share] htseq-cou</pre>	unt -t gene -i Name -f bam hoge.bam									
7 #!genebuild-last-upda hoge.gff3 > output_GFF3_gene.txt	t									
8 Chromosome ena ger S Error occured when processing GF	FF file (line 18 of file hoge.gff3):									
9 Chromosome ena tra Feature gene:L00C260_100030 do	pes not contain a 'Name' attribute									
10 Chromosome ena exc [Exception type: ValueError, r	raised in count.py:53]									
11 Chromosome ena CD iu@bielinux[mac_share]	[4:26午後]									
12 ###										
13 Chromosome ena ger 🗮										
14 Chromosome ena tra										
15 Chromosome ena exc										
16 Chromosome ena CD										
hoge 🕀										
準備完了 人名英格兰 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名 人名英格兰人名										

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

GTFファイルがデフォルト

http://htseq.readthedocs.io/en/release_0.10.0/count.html

検索...

🔢 Counting reads in features ... 🗙

union would not be appropriate and hence tend to recommend to ju

I have a GTF file? How do I convert it to GFF?

No need to do that, because GTF is a tightening of the GFF format. Hence, all GTF files are GFF files, too. By default, htseq-count expects a GTF file.

I have a GFF file, not a GTF file. How can I use it to count RNA-Seq reads?

The GTF format specifies, inter alia, that exons are marked by the word exon in the third column and that the gene ID is given in an attribute named gene_id, and htseq-count expects these words to be used by default. If you GFF file uses a word other than exon in its third column to mark lines describing exons, notify htseq-count using the --type option. If the name of the attribute containing the gene ID for exon lines is not gene_id, use the --idattr. Often, its is, for example, Parent, GeneID or ID. Make sure it is the gene ID and not the exon ID.

How can I count overlaps with features other than genes/exons?

If you have GFF file listing your features, use it together with the <u>--type</u> and <u>--idattr</u> options. If your feature intervals need to be computed, you are probably better off writing your own counting script (provided you have some knowledge of Python). Follow the tutorial in the other pages of this documentation to see how to use HTSeq for this.

How should I cite htseq-count in a publication?

Please cite HTSeq as follows: S Anders, T P Pyl, W Huber: *HTSeq — A Python framework to work with high-throughput sequencing data.* bioRxiv 2014. doi: 10.1101/002824. (This is a preprint currently under review. We will replace this with the reference to the final published version once available.)

v: release 0.10.0 -

previous | next | index

HTSeq 0.10.0 documentation »

© Copyright 2010, Simon Anders. Created using Sphinx 1.7.4.

①のあたりの記述内容からも、デフォルトのアノテーションファイルはGFF3ではなくGTFだということがわかる。ここの項目はどうやってGFF3を読み込ませてカウント情報を取得するかについてであるが、GFF3をGTFに変換するという戦略もあるのでそれを紹介。

June 12, 2018

rtracklayer(Lawrence et al., Bioinformatics, **25**: 1841-2, 2009)

119

①hoge1.gtfをExcelで眺めたところ。②変換前のGFF3 ファイルとは確かに形式が異なっていることが分かる。 hoge1.qtf E 5- 2hoge1.gtf 保存しました サインイン 囨 × タ 実行したい作業を入力してください 表示 122 共有 ファイル ホーム 插入 ページ レイアウト 数式 ID "gene:LOOC260_100010"; Name "dnaA"; biotype "protein_coding"; description "chromosomal f_{x} 4 Ŧ \times replication initiation protein DnaA"; gene_id "LOOC260_100010"; logic_name "ena"; version "1"; FGH Ν С Ε В D K M 0 ##gff-version 2 1 2 ##source-version rtracklayer 1.38.3 ##date 2018-05-30 3 +. ID "gene:LOOC260 100010"; Name "dnaA"; biotype "prot Chromosome ena gene 360 1676. 4 +. ID "transcript:BAP84581"; Name "dnaA-1"; biotype "prote Chromosome ena transcript 360 1676. 5 Name "BAP84581-1"; version "1"; Parent "transcript:BAF Chromosome ena exon 360 1676 . +. 6 Chromosome ena CDS 360 1676 . + 0 ID "CDS:BAP84581"; Parent "transcript:BAP84581"; prote 7 Chromosome ena gene 1852 2991 . +. ID "gene:LOOC260 100020"; Name "dnaN"; biotype "prot 8 +. ID "transcript:BAP84582"; Name "dnaN-1"; biotype "prote Chromosome ena transcript 1852 2991. 9 10 Chromosome ena exon 1852 2991 +. Name "BAP84582-1"; version "1"; Parent "transcript:BAF 1852 2991. + 0 ID "CDS:BAP84582"; Parent "transcript:BAP84582"; prote Chromosome ena CDS 11 3233 3457 . + . ID "gene:LOOC260 100030"; biotype "protein coding"; de 12 Chromosome ena gene +. ID "transcript:BAP84583"; biotype "protein coding"; versi 13 Chromosome ena transcript 3233 3457. +. Name "BAP84583-1"; version "1"; Parent "transcript:BAF 14 Chromosome ena exon 3233 3457 15 Chromosome ena CDS 3233 3457 + 0 ID "CDS:BAP84583"; Parent "transcript:BAP84583"; prote 3467 4588 . + . ID "gene:LOOC260 100040"; Name "recF"; biotype "prote 16 Chromosome ena gene 17 Chromosome ena transcript 3467 4588 . + . ID "transcript:BAP84584"; Name "recF-1"; biotype "prote hoge1 (+)E 🔳 Þ + 100%

120

								1 ho	ge1.gtf	をExcel	で眺め	たところ	<mark>。②変</mark>	<mark>換前</mark> σ)GF
	hoge	9.0	gtf3					ファイ	イルとは	確かに	形式が	異なっ	ている	ことが	<mark>分カ</mark>
	自動保存 💿 70 📮	ب	<i>∂</i> - ∓		2	ho	ge.gf	f3 伢	存しました		ţ	サインイン	团 —		×
יר	イル ホーム 挿入	$\langle \rangle$	ージ レイアウト	数式	データ 🗸	校閲	₹	気 り	実行したい作業	を入力してくださ	<u>i</u> ci			E	2 共有
18	•	×	<i>f</i> _≭ ID= rep	=gene:L(lication	OOC260 initiatio	_100 n pro	010; otein	Name=dn DnaA;gen	aA;biotype ie_id=LOO	=protein_c C260_1000	coding;des)10;logic_n	cription=c ame=ena;	hromoson version=1	nal	^
	А	В	С	D	Е	F	G H	1	J	к	L	М	N	0	E
1	##gff-version	3													T
2	##sequence-	regio	n Chromo	some	360 22	277	853	3							
3	#!genome-bu	ild Eı	uropean Ni	ucleoti	de Arc	chiv	e A	SM8293	9v1						
4	#!genome-vei	rsion	GCA_0008	329395	5.1										
5	#!genome-da	te 20)14-11												
6	#!genome-bu	ild-a	ccession G	CA_00	08293	395.	.1								
7	#!genebuild-l	ast-i	updated 20	14-11											
8	Chromosome	ena	gene	360	1676		+ .	ID=gen	e:LOOC	260_100	010;Nar	ne=dna/	A;biotyp	e=prot	ein
9	Chromosome	ena	transcript	360	1676		+ .	ID=trar	nscript:B	AP8458	1;Parent	t=gene:l	_OOC26	0_1000	10
10	Chromosome	ena	exon	360	1676		+ .	Parent	=transcr	ipt:BAP8	84581;N	ame=BA	P84581	I-1;cons	stif
11	Chromosome	ena	CDS	360	1676		+ 0	ID=CD	S:BAP84	581;Par	ent=trai	nscript:E	3AP8458	31;prote	ein
12	###														
13	Chromosome	ena	gene	1852	2991		+ .	ID=gen	ie:LOOC	260_100	020;Nar	ne=dnal	N;biotyp	e=prot	eir
14	Chromosome	ena	transcript	1852	2991		+ .	ID=trar	nscript:B	AP8458	2;Parent	t=gene:l	_00C26	0_1000	20
15	Chromosome	ena	exon	1852	2991		+ .	Parent	=transcr	ipt:BAP8	34582;N	ame=BA	P84582	2-1;con	stif
16	Chromosome	ena	CDS	1852	2991		+ 0	ID=CD	S:BAP84	582;Par	ent=trai	nscript:E	3AP8458	32;prote	ein
	 → hoge 		+						:	•					►
進備												I — —		+ 1	00%

GTFでカウント情報取得

②の例題5~8が、カウント情報取得時 にGTFファイルを指定するやり方です。

GTFでカウント情報取

5. GTFでgeneレベルのカウントデータを取得する場合:

アノテーションファイルがGTF形式であるという前提です。<u>hoge1.gtf</u>の3列目のgeneで (gene_idの代わりにIDでもOK)しています。マッピング結果がBAMファイル(<u>hoge.ba</u> ファイルは<u>output GTF gene.txt</u>です。2,194 genesですね。

htseq-count -t gene -i gene_id -f bam hoge.bam hoge1.gtf > output_GTF_gene.txt

6. GTFでtranscriptレベルのカウントデータを取得する場合:

アノテーションファイルがGTF形式であるという前提です。<u>hoge1.gtf</u>の3列目のtranscriptでレベル指定、9列目のtranscript_idでfeature IDを指定 (transcript_idの代わりにIDやParentでもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bamとしています(SAMの場合はsam)。出力ファイルはoutput GTF transcript.txtです。2,250 transcriptsですね。

htseq-count -t transcript -i transcript_id -f bam hoge.bam hoge1.gtf > output_GTF_transcript.txt

7.GTFでexonレベルのカウントデータを取得する場合:

<u>hoge1.gtf</u>の3列目のexonでレベル指定、9列目のexon_idでfeature IDを指定 (exon_idの代わりにParentでもOK)しています。マッビング結果 がBAMファイル(hoge.bam)なので-f bamとしています (SAMの場合は sam)。出力ファイルは <u>output GTF exon.txt</u>です。2,262 exonsですね。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge1.gtf > output_GTF_exon.txt

8. GTFでCDSレベルのカウントデータを取得する場合:

アノテーションファイルがGTF形式であるという前提です。<u>hoge1.gtf</u>の3列目のCDSでレベル指定、9列目のIDでfeature IDを指定(IDの代わ りにprotein_idやParentでもOKだが、protein_idだとちょっと変)しています。マッピング結果がBAMファイル(<u>hoge.bam</u>)なので-f bamとしていま す(SAMの場合は sam)。出力ファイルは<u>output_GTF_CDS.txt</u>です。2,194 CDSsですね。

htseq-count -t CDS -i ID -f bam hoge.bam hoge1.gtf > output_GTF_CDS.txt

例題5~8です。それっぽい結果が得られているので、おそらくこれで大丈夫。無責任な書き方に思われるかもしれませんが、フリーソフト(HTSeq含む)は基本無保証です。ここで利用している乳酸菌のGFF3やGTFでうまく動いても、他の生物種でうまくいくとも限りません。そういうものです。

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)

■ データの正規化(RPK, RPM, RPKM/FPKM)

- □ イントロ、RPK(長さの違いを補正)
- □ RPM(総リード数の違いを補正)
- □ RPKM/FPKM(長さと総リード数の両方を補正)

①例題1の③実行結果ファイル(output_GFF3_gene.txt)の、 ④最初の7行と⑤最後の7行。⑥が2,194行目に相当します。

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

おさらい

 ・カウントデータと呼 ・ ・ カウントデータ ・ ・ ・	ばれるもの。 にリードの- 1ずつ増やし に呼ばれる。	。 - 、て
HTSeqというPythonプログラムを用いてカウント情報を得るやり方を示します。ここでは、「マップ後 カウント情報取得」 e-end ゲノム アノ デーション有 QuasR(Gaidatzis 2015)」の例題10を実行して得られたマッピング結果(sample RNAseq4 3b6c652a602) た利用します。これ は、Bowtieをデフォルトオプションで実行したものです。マップする側のファイルは、サンプルデータ47のFASTA形式ティー」 LOOC260_10 (sample RNAseq4.fa)です。マップされる側のファイルは、Ensembl Bacteriaから提供されている Lactobacillus casei 12Aの r LOOC260_10 ノム配列ファイル(Lactobacillus hokkaidonensis jcm 18461.GCA 000829395.1.30.dna chromosome.Chromosome.fa)です。 しOOC260_10 ノム配列ファイルを取得する場合: アノテーションファイルに表が長いと見づらいので、hoge.gff3として取り扱います。対応するGTF形式のアノテーションファイル(hoge LOOC260_10 ファイル形式の変換 GFF3形式であるという前提です。hoge.gff3の3列目のgeneでレベル指定、9列目のgene idでfeat (gene_idの代わりにD)でもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bamとしています(SAMの) LOOC260_10 レOOC260_10 LOOC260_10 LOOC260_10 LOOC260_10 ファイル形式の変換 GFF3形式であるという前提です。hoge.gff3の3列目のgeneでレベル指定、9列目のgene idでfeat (gene_idの代わりにD)でもOK)しています。マッピング結果がBAMファイル(hoge.bam)なので-f bamとしています(SAMの) LOOC260_10 トtseq-count -t gene -i gene_id -f bam hoge.bam hoge.gff3 > output_GFF3_gene.txt LOOC260_10 LOOC260_10	0010 2 0020 5 0030 3 0040 0 0050 0 0060 0	2 5 3 0 0 0
 2. GFF3でtranscriptレベルのカウントデータを取得する場合: アノテーションファイルがGFF3形式であるという前提です。hoge.gff3の3列目のtranscriptでレベル指定,9列目のtranscriptでしています。マッピング結果がBAMファイル(hoge.bam)なので-f bamとしては	2680 0 2690 0 2690 0 201 0 0 201 0 201 0 201 0 0 0 201 0 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0

htseq-count -t exon -i exon_id -f bam hoge.bam hoge.gff3 > output_GFF3_exon.txt

ベクトルではなく行列

通常は、①のような1つのサンプル(1つのRNAseqリードファイル)のカウントデータのみを取り 扱うことはない。①だと、ただの数値ベクトル。

LOOC260_100010	2
LOOC260_100020	5
LOOC260_100030	3
LOOC260_100040	0
LOOC260_100050	0
LOOC260_100060	0
LOOC260_100070	0
LOOC260_122680	0
LOOC260_122690	0
no_feature	0
ambiguous	1
too_low_aQual	0
not_aligned	0
alignment_not_unique	0

ベクトルではなく行列

最もシンプルな実験デザインとしては、2つの条 件間比較。geneレベルのカウントデータの場合 は、①A vs. B間で発現の異なる遺伝子(Differentially Expressed Genes; DEGs)を調べる のが一般的。

		5
	条件A	条件B
LOOC260_100010	2	
LOOC260_100020	5	
LOOC260_100030	3	
LOOC260_100040	0	
LOOC260_100050	0	
LOOC260_100060	0	
LOOC260_100070	0	
LOOC260_122680	0	
LOOC260_122690	0	

June 12, 2018

最もシンプルな実験デザインとしては、2つの条件間比較。geneレベルのカウントデータの場合は、①A vs. ②B間で発現の異なる遺伝子(Differentially Expressed Genes; DEGs)を調べるのが一般的。通常は、同一グループ(or 同一群 or 同一条件)内のバラツキを評価する必要があるため、反復データを取得する。この例は3反復

	A1	A2	A3	B1	B2	B3
LOOC260_100010						
LOOC260_100020						
LOOC260_100030						
LOOC260_100040						
LOOC260_100050						
LOOC260_100060						
LOOC260_100070						
•••						
•••						
LOOC260_122680						
LOOC260_122690						

ベクトルではなく行列

①から20,689 genes × 36 samplesのカウン トデータファイル(sample blekhman 36.txt)。 実際のカウントデータ をダウンロードしてもよいが、②からもダウ (削除予定)個別バッケージのインストール (last modified 2015/02/20) ンロードできます。 基本的な利用法 (last modified 2015/04/03) サンプルデータ (last modified 2015/06/15) NEW • バイオインフォマティクス人材育成カリキュラム(次世代シークエンサ)|NGSハンズオン • バイオ サンプルデータ NEW 書籍 書籍 • 書籍 1. Illu 41. Blekhman et al., Genome Res., 2010のリアルカウントデータです。Supplementary Table1で提供されているエクセルファイル **Ki** (http://genome.cshlp.org/content/suppl/2009/12/16/gr.099226.109.DC1/suppTable1.xls; 約4.3MB) からカウントデータのみ抽出し、 生れい <mark>(Տա</mark> Եյ に整形しなおしたものがここでの出力ファイルになります。20,689 genes×36 samplesのカウントデータ(sample blekhman 36.txt) 験デザインの詳細はFigure S1中に描かれていますが、ヒト(Homo Sapiens; HS), チンパンジー(Pan troglodytes; PT), アカゲザル、 esus です macaque; RM)の3種類の生物種の肝臓サンブル(liver sample)の比較を行っています。生物種ごとにオス3個体メス3個体の計6個体使わ す。 れており(six individuals: six biological replicates)。技術的なばらつき(technical variation)を見積もるべく各個体は2つに分割されてデータ が取得されています(duplicates; two technical replicates)。それゆえ、ビト12サンブル、チンパンジー12サンブル、アカゲザル12サンブル 7歹 8歹 の計36サンブル分のデータということになります。以下で行っていることはカウントデータの列のみ「ヒトのメス(HSF1, HSF2, HSF3)」、「ヒ トのオス(HSM1, HSM2, HSM3)」,「チンバンジーのメス(PTF1, PTF2, PTF3)」,「チンバン<u>ジーのオス(PTM1_PTM2_PTM3)」「マカゲ</u>ザル **9**歹 のメス(RMF1, RMF2, RMF3)」、「アカゲザルのオス(RMM1, RMM2, RMM3)」の順番(講義日程(平成30年度) 10 う少し美しくやることも原理的には可能ですが、そこは本質的な部分ではありませんの 11 手順で行っています。 当然ながら、エクセルなどでファイルの 中身を眺めて完全に列名 12 1. 平成30年06月12日 (PC使用) 尚、"R1L4.HSF1"と"R4L2.HSF1"が「HSF1というヒトのメスー個体のtechnical replicates 13 講義資料PDF 14 #in f <- "http://genome.cshlp.org/content/suppl/2009/12/16/gr.09</pre> (Rで)塩基配列解析 15 in f <- "suppTable1.xls"</pre> #入力ファイル名を指定してin QuasR : Gaidatzis et al., Bioinformatics, 2015 out_f <- "sample_blekhman_36.txt"</pre> 16 #出力ファイル名を指定してout HTSeq : Anders et al., Bioinformatics, 2015 hoge10.txt #入力ファイルの読み込み htseq-countのページ hoge <- read.table(in f, header=TRUE, row.names=1, sep="\t", quo dim(hoge) #行数と列数を表示 hoge1.gtf sample_blekhman_36.txt #サブセットの取得 2. 平成30年06月19日 (PC使用) #必要な列名の情報を取得した data <- cbind(3. 平成30年06月26日 (PC使用) hoge\$R1L4.HSF1, hoge\$R4L2.HSF1, hoge\$R2L7.HSF2, hoge\$R3L2.HSF2 4. 平成30年07月03日 (PC使用) hoge\$R1L1.HSM1, hoge\$R5L2.HSM1, hoge\$R2L3.HSM2, hoge\$R4L8.HSM2 hoge\$R1L2.PTF1, hoge\$R4L4.PTF1, hoge\$R2L4.PTF2, hoge\$R6L6.PTF2, noge\$K3L7.PTF3, noge\$K5L3.PTF3, hoge\$R1L6. hoge\$R6L4.PTM3, hoge\$R1L7 Blekhman et al., Genome Res., 20: 180-189, 2010 hoge\$R4L7.RMF3, 131 June 12, 2018 hoge (RAL3 RMM3) hoge\$R1L3

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

sample_blekhman_36.txtをExcelで眺めるとこんな感じ。①
 のサンプルで考えると、②はENSG0000000971という遺伝
 子領域上に2,262リードマップされたことを表す。③は
 ENSG0000001460の遺伝子領域上に3リードマップされた
 ことを表す。もしこの2つの配列長が同じなら、マップされた
 リード数が多い前者②の発現量が高いという理解でよい。

	A		С	D	Е	F	G	Н	Ι	J	
1		R1 L4.HSF1	R4L2.HSF1	R2L7.HSF2	R3L2.HSF2	R8L1.HSF3	R8L2.HSF3	R1L1.HSM1	R5L2.HSM1	R2L3	
2	ENSG0000000003	172	157	147	153	78	90	60	61	2	
3	ENSG00000000005	0	0	0	0	0	0	0	0		
4	ENSG0000000419	36	45	26	35	16	40	17	22		
5	ENSG0000000457	41	50	28	34	34	42	50	64		
6	ENSG0000000460	3	3	8	9	7	5	9	6		
7	ENSG0000000938	23	21	30	35	112	98	32	41		
8	ENSG0000000971	2262	2 2503	3473	3752	1665	1740	1726	1874	32	
9	ENSG0000001036	155	T 142	118	133	79	110	99	101		
10	ENSG0000001084	323	307	377	360	151	155	155	181	2	
11	ENSG0000001167	19	17	15	15	16	20	13	16		
12	ENSG00000001460	34	3 0	0	1	1	4	0	1		
13	ENSG0000001461	25	24	22	15	14	20	13	15		
14	ENSG0000001497	59	58	46	47	46	43	39	41		
15	ENSG0000001561	22	26	23	27	28	25	29	33		
16	ENSG0000001617	30	34	24	27	77	73	40	30		
17	ENSG0000001626	9	3	12	32	37	33	24	19		-
4	sample_blekt	hman_36	\oplus			: •				Þ	
準備	完了							I I	+	100%	

EXCELで概観

ページ レイアウト

データ

数式

5- 0- =

挿入

 \cdot : $\times \checkmark f_x$

ホーム

XШ

A1

ファイル

	-				<mark>①の+</mark>	ナンプル内	<mark>9で、②は</mark>	<mark>③より226</mark>	<mark>2/3 = 75</mark> 4	1 倍高				
	データ	の正	規化		発現と	·評価して	はいけな	い。発現量 で描正す 2		関係を				
X≣			//010	たりは④	参考書の	p132-137	5000安/170 で述べて	りる。 いる。						
ייד	ファイル ホーム 挿入 ページレイアウト 数式 データ 校閲 表示 アドイン アドイン 門田幸二 門田幸二 ア													
A1		f_x								~				
	А		С	D	Е	F	G	Н	Ι	J				
1		R1 L4.HSF1	R4L2.HSF1	R2L7.HSF2	R3L2.HSF2	R8L1.HSF3	R8L2.HSF3	R1 L1.HSM1	R5L2.HSM1	R2L3				
2	ENSG0000000003	172	157	147	153	78	90	60	61	2				
3	ENSG00000000005	0	0	0	0	0	0	0	0					
4	ENSG0000000419	36	45	26	35	16	40	17	22					
5	ENSG0000000457	41	50	28	34	34	42	50	64					
6	ENSG0000000460	3	3	8	9	7	5	9	6					
7	ENSG0000000938	L 23	21	30	35	112	98	32	41					
8	ENSG0000000971	2 2262	2503	3473	3752	1665	1740	1726	1874	32				
9	ENSG00000001036	155	1 42	110		70	110	10 100	101					
10	ENSG00000001084	323	307	3.1	<u> 手藉 トランスク</u> 車籍 トランスク	<u>リノトーム解析</u> ロゴトーム解析	L231 RNA-sec	modified 2014/0: データ(FASTOT	5/12) 7マイル) (last m	odified 2016				
11	ENSG00000001167	19	17	• =	書籍 トランスク	リプトーム解析	2.3.2 リファレン	·ス配列 (last mo	dified 2014/04/	16)				
12	ENSG00000001460	3 3	0	• 1	書籍 トランスク	リプトーム解析	<u>2.3.3 アノテージ</u>	<u>/ョン情報</u> (last n	nodified 2014/0	4/17)				
13	ENSG00000001461	25	24	• 1	書籍 トランスク	リプトーム解析	<u>2.3.4 マッピンク</u>	<u>"(準備)</u> (last mo	dified 2014/06/	20)				
14	ENSG00000001497	59	58	• •	雪耤 トランスク! 聿簎 トランスク!	リフトーム解析 ロゴトーム解析	<u>2.3.5 マッピンク</u> 2.3.6 セウンルラ	7 <u>(本畨)</u> (last mo 	dified 2014/06/	21)				
15	ENSG0000001561	22	26	• •	宇稲 トランスク 書籍 トランスク	リプトーム解析	<u>2.3.0 /] ノントリ</u> 331 解析日的	<u></u> (last r)別留意占 (last r	$\frac{10011100}{1001100}$)4/20)				
16	ENSG0000001617	30	34	• ‡	書籍 トランスク	リプトーム解析	<u>3.3.2 データの</u>	正規化(基礎編)	(4) modified 2	2014/06/23)				
17	ENSG0000001626	9	3	• ‡	書籍 トランスク	リプトーム解析	<u>3.3.3 クラスタリ</u>	<u>レング</u> (last modif	iet z014/04/20))				
1/	sample blek	hman 36	(+)	• •	書籍 トランスク	リプトーム解析	<u>3.3.4 各種プロ</u>	<u>≫</u> ⊦ (last modifie	d 2014/04/27) の一項公式の					
36± /##				• •	雪箱 トマノスク! 書籍 トランスク!	ワントーム胜灯 リプトーム解析	<u>4.3.1ンミュレト</u> 432データの	<u>-ンヨンテーダ(貝</u> 正想化(広田編)	<u>い</u>	ast modified $2014/04/27$				
凖偏	元」			• ‡	書籍 トランスク	リプトーム解析	4.3.3 2群間比喇	交 (last modified	2014/04/28)	.011/01/27)				
				. :	書籍トランスク	リプトーム解析	434 他の 宝崎	ー・ デザイン(3)鮮間	(last modified	2014/04/28)				

		:	参考書p1	32-137	例えば、	<mark>②と③の</mark>	<mark>配列長が</mark>	それぞれ	<mark>4)3000塩碁</mark>	基、
	データ	ちけ	111	•	⑤500塩	基だった。	と仮定する	ると、 ②は(3に対して	• •
			パルー	1	3,000/50	0 = 6倍县	長いので、	その分を被	甫正してや	る必
x∎	🗄 🕤 👌 🗧			sample_blek	要がある	5。⑥様々	な表現方	法があるフ	<mark>が、発現量</mark>	の比
יקר	イル ホーム 挿入 ペ	ージ レイアウト	数式 データ	校閲 表示	率(2)/3)で考える	ると125.66	<mark>67倍という</mark>	の は 不変	
A1		fr								
2.4	Α		C	D	F	F	G	Н	T	
1		R1L4.HSF1	R4L2.HSF1	R2L7.HSF2	- R3L2.HSF2	R8L1.HSF3	R8L2.HSF3	R1L1.HSM1	R5L2.HSM1.F	213
2	ENSG0000000003	172	157	147	153	78	90	60	61	2
3	ENSG00000000005	0	0	0	0	0	0	0	0	
4	ENSG00000000419	36	45	26	35	16	40	17	22	
5	ENSG0000000457	41	50	28	34	34	42	50	64	
6	ENSG0000000460	3	3	8	9	7	5	9	6	
7	ENSG0000000938	23	21	30	35	112	98	32	41	
8	ENSG0000000971	2 2262	2503	<u>34</u> 73	3752	1665	1740	1726	1874	32
9	ENSG0000001036	T 155	1 42	14	133	79	110	99	101	
10	ENSG0000001084	323	307	JAY	360	151	155	155	181	2
11	ENSG0000001167	19	17	15	15	16	20	13	16	
12	ENSG0000001460	33	0	0	1	1	<pre></pre>	onsole		
13	ENSG0000001461	T <u>5</u>	24	22	15	14	> 2	262/3		<u>^</u>
14	ENSG0000001497	-69	58	46	47	46	[1]	754		_
15	ENSG0000001561	22	26	23	27	28	> (2262/6)/3		
16	ENSG0000001617	30	34	24	27	77	[1]	125.6667		
17	ENSG00000001626	9	3	12	32	37	_ > (2262/3000)/(3/500)	_
-	sample_blek	hman_36	+			: •		125.666/		Ξ
準備	完了						- 1			-
										•

		į	教科書p1	32-137	<mark>(4)</mark>	<mark>t「マップさ</mark>	されたリー	<mark>・ド数(生の</mark>)	カウント数	牧)×1
	DDV 站	π	11		/ 西	列長」に	相当する。	。 得られる 教	数値は、	<u> </u>
		ШV,	アーノ		あた	りのリー	ド数(Read	<mark>ls per one</mark>	base)とも	いえ
X∄	🗄 🕤 👌 ÷			sample_blek	chman_3 <mark>る。</mark>	これが長	さ補正の	<mark>基本形であ</mark>	るが、得	られ
יקר	イル ホーム 挿入 ぺ	ージ レイアウト	数式 データ	校閲 表示	ァド <mark>る数</mark>	て値(0.754	や0.006)カ	が小さすぎ	るのが難	点
0.4	~ .	£								
Al		Jx								*
	A		C	D	E	F	G	H	I	
1		R1L4.HSF1	R4L2.HSF1	R2L7.HSF2	R3L2.HSF2	R8L1.HSF3	R8L2.HSF3	R1L1.HSM1F	R5L2.HSM1	R2L3
2	ENSG0000000003	1 /2	157	14/	153	/8	90	60	61	2
3	ENSG0000000005	0	0	0	0	0	0	0	0	
4	ENSG0000000419	36	45	26	35	16	40	17	22	
5	ENSG0000000457	41	50	28	34	34	42	50	64	
6	ENSG0000000460	3	3	8	9	7	5 00 R (9 Console	6	
7	ENSG0000000938	23	21	30	35	112		console		
8	ENSG0000000971	2262	2503	3473	3752	1665	· >	(2262/6)/3		
9	ENSG0000001036	155	1 42	118	133	79	[1]] 125.6667		
10	ENSG0000001084	323	307	377	360	151	>	(2262/3000))/(3/500))
11	ENSG0000001167	19	17	15	15	16		125.6667		
12	ENSG0000001460	3 3	0	0	1	1		2262/3000		
13	ENSG0000001461	25	24	22	15	14		0.754 2/500		
14	ENSG0000001497	59	58	46	47	46				
15	ENSG0000001561	22	26	23	27	28		2262*(1000	/3000)	
16	ENSG0000001617	30	34	24	27	77	[1]	1 754	, 5000,	
17	ENSG0000001626	9	3	12	32	37	> 3	3* (1000/50	0)	E
	sample_blek	hman_36	+			÷ •	[1]] 6	-	
準備	完了						>			-
							•			• ان ۱

1	RPK補	Ē	教科書p1	32-137	④は「- ×1000 1000塩	④は「マップされたリード数(生のカウント数) ×1000/ 配列長」に相当する。得られる数値は、 1000塩基あたりのリード数(Reads per one kilobase;					
x∎	₽ 5 ° ? =			sample_blek	hn RPK)と	もいえる。	。配列長0)異なる遺(云子間の発現		
771	<i>゚</i> ル ホーム 挿入 ペ	ージ レイアウト	数式 データ	校閲 表示	レベル	<mark>の大小関</mark>	係を平等	に比較すへ	く、「遺伝子		
A1		fx			- <mark>が1000</mark> - <u>考えち</u>) bpだった	ときのリー	ード数」とす	るのがRPKの		
	A		С	D	ラんリ		上後の値	a (2) /J · / J4,			
1		R1 L4.HSF1	R4L2.HSF1	R2L7.HSF2	R3L2.HSF2	R8L1.HSF3	R8L2.HSF3	R1 L1.HSM1 R	5L2.HSM1 R2L3		
2	ENSG00000000003	172	157	1 4 7	153	78	90	60	61 2		
3	ENSG0000000005	0	0	0	0	0	0	0	0		
4	ENSG0000000419	36	45	26	35	16	40	17	22		
5	ENSG0000000457	41	50	28	34	34	42	50	64		
6	ENSG0000000460	3	3	8	9	7	5	9 Console	6		
7	ENSG0000000938	23	21	30	35	112		013012			
8	ENSG0000000971	2 2262	2503	<u>34</u> 73	3752	1665		(2262/6)/3			
9	ENSG0000001036	T 155	1 42	118	133	79	[1]	125.6667			
10	ENSG0000001084	323	307	377	360	151	> ((2262/3000)	/(3/500)		
11	ENSG0000001167	19	17	15	15	16		125.6667			
12	ENSG00000001460	33	0	0	1	1	> 2 [1]	262/3000			
13	ENSG00000001461	25	24	22	15	14		2/500			
14	ENSG00000001497	59	58	46	47	46	[1]	0 006			
15	ENSG0000001561	22	26	23	27	28	$ \rangle \rangle 2$	262*(1000)	(3000)		
16	ENSG0000001617	30	34	24	27	77	[11]	754			
17	ENSG0000001626	9	3	12	32	37	4 > 3	3* (1000/500)) =		
4	sample_blek	hman_36	÷			: •	[1]	6			
準備	完了						>				
							•				

	①RPKの例題はこちら。当然配列長の情報
RPK補正	が必要です。配列長補正が必要な局面は、 同一サンプル内で異なる遺伝子間の発現
(Rで)塩基配列解析 (last modified 2018/05/30, since 2010)	レベルの大小関係を知りたい場合、です。
このウェブベージのR関連部分は、 <u>インストール について</u> の推奨手順 (<u>Windows2018.0)</u> なバッケージをインストール済みであるという前提で記述しています。 初心者の方は <u>基本</u> <u>版</u>)で自習してください。 本ウェブベージを体系的にまとめた <u>書籍</u> もあります。 (2015/04/03	
 マッブ後 カウント情報取得 トランスクリブトーム BEDファイルから マッブ後 配列長とカウント数の関係(last modified 2015/07/03) 正規化 について(last modified 2014/06/22) 正規化 基礎 RPK or CPK(配列長補正)(1) modified 2015/07/04) 正規化 基礎 RPK or CPM(総リード数補工でlast modified 2016/04) 正規化 基礎 RPKM(last modified 2015/07/04) Silhouetteスコアの第 正規化 サンブル内 EDASeq(Risso 2011)(last modified 2013/06/2014) 正規化 サンブル内 RNASeqBias(Zheng 2011)(last modified 2014/06/2014) 	 (last modified 2014/06/21) 4) 05/12) 24) 3/06/24)
正規化 サンブル 正規化 サンブル 正規化 サンブル 正規化 サンブル ここでは、遺伝子(転写物)ごとのリード数を「配列 正規化 サンブル に現化 サンブル に現化 サンブル に見化 サンブル に見化 サンブル に方を示します。「リード数 kilobase; CPK)もときどき見受けられます。 「ファイル」-「ディレクトリの変更」で解析したいフ	配列長補正) 川長が1000 bp (one kilobase)だったときのリード数; Reads per kilobase ニョカウント数」なのでReadsのところをCountsに置き換えた表現(Counts per マイルを置いてあるディレクトリに移動し以下をコビベ。
1. 配列長とカウント情報を含むファイル(sample 1-3列目がそれぞれ gene ID 配列長 カウント	<u>length_count.txt</u>)の場合: 教からなるファイルです、基本形です。
<pre>in_f <- "sample_length_count.txt" out_f <- "hoge1.txt" param <- 1000</pre>	#入力ファイル名を指定してin_fに格納 #出力ファイル名を指定してout_fに格納 #「Reads per X」のXの値を指定(デフォルトはRPKなので1000
#入力ファイルの読み込み data <- read.table(in_f, header=TR head(data)	UE, row.names=1, sep="\t", quote="")#in_fで指定したファイル #確認してるだけです

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

RPM補正

①20,689 genes × 36 samplesのカウント
 データファイル(sample_blekhman_36.txt)に
 対してRPM補正を実行するのは、②例題10

•			参	考書p132	2-137	スラ	イドを見る	がけ。サ	<mark>ンプル(列</mark>))ごとにマ	ップ				
1		DN/之出	፲	1,		され	た総リート	、数を計算	した結果	。サンプノ	レ間				
						<mark>比</mark> 較	の場合に	は、この紙	総リード数	を揃える	の				
x∎ .	5-	⊘~ ∓			sample_blekhm	ian_36. <mark>が基</mark>	本戦略。	<mark>総リード</mark> 数	<mark>bを100万</mark> (one millio	n)				
ファイル	木-1	ム 挿入 ページ	レイアウト 数:	式 データ オ	校閲 表示	ァドイン に捕	iえるのが	<mark>、RPM(R</mark>	eads per i	<mark>million)補</mark>	正				
B2069	B20692 • : $\times \sqrt{f_x}$ =SUM(B2:B20690)														
		A	В	С	D	E	F	G	Н	Ι					
20677	ENSG	00000221765	0	0	0	0	0	0	0	0					
20678	ENSG	00000221766	0	0	0	0	0	0	0	0					
20679	ENSG	00000221767	0	0	0	0	0	0	0	0					
20680	ENSG	00000221768	0	0	0	0	0	0	0	0					
20681	ENSG	00000221770	4	2	4	0	2	2	0	0					
20682	ENSG	00000221771	0	0	0	0	0	0	0	0					
20683	ENSG	00000221775	0	0	0	0	0	0	0	0					
20684	ENSG	00000221778	0	0	0	0	0	0	0	0					
20685	ENSG	00000221781	0	0	0	0	0	0	0	0					
20686	ENSG	00000221782	0	0	0	0	0	0	0	0					
20687	ENSG	00000221783	0	0	0	0	0	1	0	0					
20688	ENSG	00000221784	0	0	0	0	0	0	0	0					
20689	ENSG	00000221786	0	0	0	0	0	0	0	0					
20690	ENSG00000221788		0	0	0	0	0	0	0	0					
20691															
20692			1665987	1719125	1620189	1801009	1393867	1450604	1346515	1497738	_2				
20693											₽				
	F	sample_blekhm	an_36	+							►				
準備完了	7								•	+ 1	00%				

Г

24		参	考書p132	2-137 <mark>も</mark>	」揃えずに	こ、例えば	<u>(1)と(2)の</u>	サンブル	間比較(発	現					
	RPM裙	下 の	イン		動遺伝子	(DEG)検と	出)を行うと		うが②に	北ベ					
x1 .	ヽヽヽヽヽ 			■ ■ C sample_b 状	至14的に 態である。	(1,801,009 ことを意味	1/ 1,340,3 するので	15 =)1.34 、①で高姿	倍局充現発現となる) '\T					
ファイル	イル ホーム 挿入 ページレイアウト 数式 データ 校閲 表 DEGが多く検出されるだろう。もちろんそれは間違い														
B2069	320692 • : $\times \sqrt{f_x}$ =SUM(B2:B20690)														
	Α	В	С	D	E	F	G	Н	I						
20677	ENSG00000221765	0	0	0	0	0	0	0	0						
20678	ENSG00000221766	0	0	0	0	0	0	0	0						
20679	ENSG00000221767	0	0	0	0	0	0	0	0						
20680	ENSG00000221768	0	0	0	0	0	0	0	0						
20681	ENSG00000221770	4	2	4	0	2	2	0	0						
20682	ENSG00000221771	0	0	0	0	0	0	0	0						
20683	ENSG00000221775	0	0	0	0	0	0	0	0						
20684	ENSG00000221778	0	0	0	0	0	0	0	0						
20685	ENSG00000221781	0	0	0	0	0	0	0	0						
20686	ENSG00000221782	0	0	0	0	0	0	0	0						
20687	ENSG00000221783	0	0	0	0	0	1	0	0						
20688	ENSG00000221784	0	0	0	0	0	0	0	0						
20689	ENSG00000221786	0	0	0	0	0	0	0	0						
20690	ENSG00000221788	0	0	0	0	0	0	0	0						
20691															
20692		1665987	1719125	1620189	1801009	1393867	1450604	1346515	1497738	2					
20693										- + ▼					
	sample_blekhma	an_36 (•	Ð							►					
準備完了	7							•	+ 10	00%					

24				参考] 手書p1	32-13	37 🤇	olSur	ms関	数で、	列ご。	との総	<mark>リード数を</mark>	<mark>一気に表</mark>	示。
	RPN	小猫	<u>ग</u> ित	D.	イ	ノト			とR間		値が	得られ	ていること	がわかる)(1) +
	5- 2-	• I M ·				samr	le blek		。 么 子 部	(PM)/用. 100万/		ルナー (ここ	ッで回し探 はまだ補可	116を美行 一前の状育	9 11)
ファイル	ホーム	挿入 ページ	レイアウト	数式	データ	校閲	表示				<u> </u>				<u>,, /</u> 7 [21]
B2069	12 -	XJ	fr =su	M(B2·B		1-									
	A		<i>ј</i> ~ в		R Con	sole									
20677	ENSG0000	0221765			> co. R1L4	HSF1	(data) R4L2.	HSF1	R2L	7.HSF2	R3L2	.HSF2	R8L1.HSF3	R8L2.HSI	73
20678	ENSG0000	0221766		0	16	55987	171	9125	10	520189	18	01009	1393867	14506)4
20679	ENSG0000	0221767		0	R1L1	HSM1	R5L2.	HSM1	R2L3	3.HSM2	R4L9	1 12	R3L6.HSM3	R4L1.HSM	43
20680	ENSG0000	0221768		0	134	46515	149	97738	22	217235	21	679 94	1974228	18253	13
20681	ENSG0000	0221770		4	R1L2	2 1	R4L4.	PTF1	R2L4	4.PTF2	R6L6	.PTF2	R3L7.PTF3	R5L3.PTH	73
20682	ENSG0000	0221771		0	26	57264	267	7771	19	910402	18	81431	1838275	181391	18
20683	ENSG0000	0221775		0	R1L6	.PTM1	R3L3.	PTM1	R2L8	B.PTM2	R4L6	.PTM2	R6L2.PTM3	R6L4.PTM	13
20684	ENSG0000	0221778		0	148	31536	169	4688	10	508138	19	46512	1745188	18035	5
20685	ENSG0000	0221781		0	RIL/	RMFI	R5L1.	RMF1	R2L2	2.RMF2	R5L8	.RMF2	R3L4.RMF3	R4L/.RM	£3
20686	ENSG0000	0221782		0	240 D172	JU66U		DMM1	- Z3		DET 4	33906 DMM2	2685655		15
20687	ENSG0000	0221783		0	261	57274	K3L0. 250		КZЦ(1 (0.RMMZ	КЭЦ4 10	·RMMZ	2110/06	2/117(13
20688	ENSG0000	0221784		0		51214	250	JJJ41	1.	942290	19	74502	2119490	241170	=
20689	ENSG0000	0221786		0	1										-
20690	ENSG0000	0221788		0	•	0	J		0	1			,		►
20691															
20692			16659	87	171912	5 16	520189	1801	1009	13938	67 1	450604	1346515	1497738	2
20693								(
	► sar	nple_blekhm	an_36	\oplus											Þ
準備完了	7												•	+ 1	00%

参考	音書p132-1	<mark>①入力は、</mark>	20,689 gen	<mark>es × 36 sam</mark>	nplesのカウ	<mark>ントデータ。</mark>				
RPM 编正		サンプル(み	间)ごとに総	リード数は	異なるので	、②正規化				
10. <u>サンブルテータ</u> 41の20,689 genes×36 sample	sのカワントティ	要素数は、	列数と同じ	<mark>く36。(2)の</mark> n	fオフジェク	トの中身を	見			
in f <- "sample blekhman 36.txt"	#入力フィ	るために、	必要な部分	までなど自	由にコピペ	実行してよし	١.			
out_f <- "hoge10.txt"	#出力ファ	イル名を指定し	てout_fl:格納							
param1 <- 1000000	#補正後の	総リード数を指	定(RPMにしたい)場合はこ						
#入力ファイルの読み込み										
<pre>data <- read.table(in_f, header=TRU</pre>	JE, row.names	=1, sep="\t",	quote="") <mark>#i</mark>	n_fで指定						
colSums(data)	#総リード	数を表示								
#本2正規化)										
<pre>nf <- param1/colSums(data)</pre>	#正規化係	数を計算した結	果をnflこ格納							
<pre>data <- sweep(data, 2, nf, "*")</pre>	#正規化係	数を各列に掛け	た結果をdatal	こ格納						
	#おおり 一下	叙で衣示								
#ファイルに保存	🙀 R Console						×			
<pre>tmp <- cbind(rownames(data), dat write.table(tmp, out f, sep="\t"</pre>	> nf						*			
	R1L4.HSF1	R4L2.HSF1	R2L7.HSF2	R3L2.HSF2	R8L1.HSF3	R8L2.HSF3				
<	0.6002448	0.5816913	0.6172119	0.5552443	0.7174286	0.6893680				
	R1L1.HSM1	R5L2.HSM1	R2L3.HSM2	R4L8.HSM2	R3L6.HSM3	R4L1.HSM3				
	0.7426579	0.6676735	0.4510122	0.4612559	0.5065271	0.5478332				
	R1L2.PTF1	R4L4.PTF1	R2L4.PTF2	R6L6.PTF2	R3L7.PTF3	R5L3.PTF3				
	0.3/49160	0.3/34449	0.5234500	0.5315103	0.5439882	0.5512928				
	RIL6.PTMI	R3L3.PTMI	RZL8.PTMZ	R4L6.PTMZ	R6L2.PTM3	R6L4.PTM3				
	0.0/49/52	0.3900791 D511 DME1	0.0210372	0.0107094 D510 DME2	0.3730042 D3T/ DME3	0.0044600 D/T7 DME3				
	0 4165521	0 4737527	0 4276368	0 6519304	0 3723486	0 3945404				
	R113.RMM1	R3L8.RMM1	R216.RMM2	R514.RMM2	R311.RMM3	R4T ₃ .RMM3				
	10110.10111	1010.10111	1.0000.00000000	1.0111.01110	1.0111.10110	10110.10110				
	0.3763255	0.3990517	0.5148546	0.5064568	0.4718103	0.4146441				
参考 RPM補正 10. サンブルデータ41の20,689 genes×36 samples	書p132-137 sのカウントデータ(<u>sample</u>	①nfベクトルの ンプルの正規 1,665,987 = 0.6 ③1,665,987は	01番目の要素 化係数(0.600 6002448として R1L4.HSF1サ	表である、F 2448)は、 に計算して トンプルの	₹1L4.HSF1 ②1,000,000 いる。ここう 総リード数	サ 0 / で、				
--	--	--	--	--	--	----------------				
in_f <- "sample_blekhman_36.txt" out_f <- "hoge10.txt" param1 <- 1000000 #入力ファイルの読み込み	#入力ファイル名を #出力ファイル名を #補正後の総リード	指定してin_fに格納 指定してout_fに格納 数を指定(RPMにしたい	い場合はこ							
<pre>data <- read.table(in_+, header=IRU colSums(data)</pre>	E, row.names=1, sep	="\t", quote="")#1	n_+ C指定							
<pre>#本番(正規化) nf <- param1/colSums(data) data <- sweep(data, 2, nf, "*") colSums(data) #ファイルに保存 tmp <- cbind(rownames(data), data) write.table(tmp, out_f, sep="\t", a </pre>	<pre>> nf R1L4.HSF1 R4L2. 0.6002448 0.581 R1L1.HSM1 R5L2. 0.7426579 0.667 R1L2.PTF1 R4L4. 0.3749160 0.373 R1L6.PTM1 R3L3. 0.6749752 0.590 R1L7.RMF1 R5L1. 0.4165521 0.473 R1L3.RMM1 R3L8. 0.3763255 0.399</pre>	HSF1 R2L7.HSF2 6913 0.6172119 HSM1 R2L3.HSM2 6735 0.4510122 PTF1 R2L4.PTF2 4449 0.5234500 PTM1 R2L8.PTM2 0791 0.6218372 RMF1 R2L2.RMF2 7527 0.4276368 RMM1 R2L6.RMM2 0517 0.5148546	R3L2.HSF2 F 0.5552443 0 R4L8.HSM2 F 0.4612559 0 R6L6.PTF2 F 0.5315103 0 R4L6.PTM2 F 0.5137394 0 R5L8.RMF2 F 0.6519304 0 R5L4.RMM2 F 0.5064568 0	<pre>88L1.HSF3 0.7174286 83L6.HSM3 0.5065271 83L7.PTF3 0.5439882 86L2.PTM3 0.5730042 83L4.RMF3 0.3723486 83L1.RMM3 0.4718103</pre>	R8L2.HSF3 0.6893680 R4L1.HSM3 0.5478332 R5L3.PTF3 0.5512928 R6L4.PTM3 0.5544605 R4L7.RMF3 0.3945404 R4L3.RMM3 0.4146441					
2	<pre>> 1000000/<u>16659</u> [1] 0.6002448 > param1/166598 [1] 0.6002448 > </pre>	87				• III				

参考書p132-137

RPM補正

RPM補正は、①入力ファイル情報に相当するdata の、②各列に対して、③正規化係数nfを、④掛けた 結果を、再びdataオブジェクトに格納することで達成

10. <u>サンブルデータ</u>41の20,689 genes×36 samplesのカウントデータ(sample blekhman 36.txt)の場合:

in_f <- "sample_blekhman_36.txt"
out_f <- "hoge10.txt"
param1 <- 1000000</pre>

#入力ファイルの読み込み

<u>data</u> <- read.table(in_f, header=TRUE, row.names=1, sep="\t", quote="")#in_fで指定 colSums(data) #総リード数を表示

#入力ファイル名を指定してin flc格納

#正規化係数を計算した結果をnflc格納

#正規化係数を各列に掛けた結果をdataに格納

#出力ファイル名を指定してout flc格納

#補正後の総リード数を指定(RPMにしたい場合はこ

#本番(正規化)
nf <- param1/colSum2ata)
data <- sweep(data, 2, nf, "*")
colSums(data)
</pre>

#ファイルに保存

tmp <- cbind(rownames(data), data) #保存したい情報をtmpに格納 write.table(tmp, out_f, sep="\t", append=F, quote=F, row.names=F)#tmpの中身を指定

#総リード数を表示

● 参考書p132-137		RPM補正後のdataオブジェクトに対して、					
RPM補正			colSums関)総リード数	を表示。全	部
	の上去、」 プ	b .			うしいるこ	<u>ເມັນ</u> ທີ	2 I
10. <u>サンフルナータ</u> 410/20,689 genes×36 sample	sのカワントテージ	solution (sample blek)	総リート数	が 揃ってい	るので、サ	シフル間で	大
in f <- "sample blekhman 36.txt"	#入力ファ	イル名を指定し	幅に数値カ	「異なるとい	ら事態は回	」避できる。	
out_f <- "hoge10.txt"	# 出力ファ	イル名を指定し	てout_flこ格納				
param1 <- 1000000	#補正後の	総リード数を指	定(RPMにしたい	∖場合はこ			
#入力ファイルの読み込み							
data <- read.table(in f, header=TR	R Console						x
colSums(data)			0		n		*
	> data <-	sweep(data	a, 2, nī, '	· · · ·)	#止規指指於数	(と谷列)5 圭二	
#本審(正規IL) Inf <- param1/colSums(data)	> COLSUMS	(Udld)	DOT 7 HORO	DOTO HORO	#総リート女2		
data <- sweep(data, 2, nf, "*")	10+06	10+06	10+06	10+06	1010	10+06	
colSums(data)	R1T1 HSM1	R5T.2 HSM1	R21.3 HSM2	R41.8 HSM2	RSI'E HCM3	R4T.1 HSM3	
	10+06	10+06	10+06	10-106	10+06	10+06	
tmp <- chind(rownames(data), data)	R1L2.PTF1	R414.PTF1	R2L4.PTF2	R6L6.PTF2	R3L7.PTF3	R5L3.PTF3	
write.table(tmp, out_f, sep="\t", a	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
	R1L6.PTM1	R3L3.PTM1	R2L8.PTM2	R4L6.PTM2	R6L2.PTM3	R6L4.PTM3	
<	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
	R1L7.RMF1	R5L1.RMF1	R2L2.RMF2	R5L8.RMF2	R3L4.RMF3	R4L7.RMF3	
	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
	R1L3.RMM1	R3L8.RMM1	R2L6.RMM2	R5L4.RMM2	R3L1.RMM3	R4L3.RMM3	
	1e+06	1e+06	1e+06	1e+06	1e+06	1e+06	
	>						
	> #ファイルに伐	「「「」				±+0+	
	> tmp <- (cbind (rowna	ames(data),	data)	#1朱存したい11	有戦をもら	
	> write.ta	able(tmp, (out_I, sep=	="\t", appe	ena=F, quot	:e=⊬, row.⊱	E
	•	iii					

Contents

- カウント情報取得の続き
 - □ フォローアップ(なぜ365 genesとなったのか?)
 - □ HTSeqでカウント情報取得
 - htseq-countとカウントモード
 - Usage(利用法)の読み解き方、実行(geneレベルカウントデータの取得)
 - 結果の解釈、応用スキルの習得
 - 課題1~3
 - 課題4(-t gene -i Nameとして、gene symbolをfeatureとして使うには)
 - ファイル形式の変換(GFF3 → GTF)
- データの正規化(RPK, RPM, RPKM/FPKM)
 - □ イントロ、RPK(長さの違いを補正)
 - □ RPM(総リード数の違いを補正)
 - □ RPKM/FPKM(長さと総リード数の両方を補正)

RPKM補正

(1) RPKMは、配列長補正(RPK)と総リード数 補正(RPM)を組み合わせただけです。これ がよくexpression levelとして取り扱われます。 今ではRPKMではなくFPKMがよく使われます。

(Rで)塩基配列解析 (last modified 2018/05/30, since 2010)

	これは、昔の超short read時代は「マップされたread数」を
RPKM補正	ベースとしていたが、今はpaired-endデータでリード長も長く なってきたので、paired-endで読む前の断片配列(fragment)
(Rで)塩基配列解析	がいくつマップされたのかを考えるようになったからです。だ
(last modified 2018/05/30, since 2010)	からRPKMではなくFPKMです。コンセプトは全く同じですが、
このウェ このウェ ・ マップ後 <u>市列長とカウント数の関係</u> (last modified 201	呼び方が違うだけという理解で差し支えありません。
版)で自 · <u>正規化 について</u> (last modified 2014/06/22)	
 ・ 正規化 基礎 <u>RPK or CPK (配列長補正)</u> (last modifie ・ 正規化 基礎 <u>RPM or (PMI(総リード数補正)</u> (l 	E規化 基礎 RPKM
 正規化 基礎 <u>RPKM</u> (1) modified 2015/07/04) What's 正規化 サンブル内 E) R Seg(Risso 2011) (last 遺伝子) 	
•「マッ・正規化 サンブル内 RNASeqBias(Zheng 2011) Reads	s per kilobase per million (RPKM)」に変換するやり方を示します。
• 「イン」• <u>正規化 サンブル間 について</u> (last modified 20) ^{ファイ}	イル」ー「ディレクトリの変更」で解析したいファイルを置いてあるディレクトリに移動し以下をコピペ。
• [<u>H29</u> • 正規化 サンブル間 <u>Upper-quartile(Bullard 201</u> 1. 配列	列長とカウント 情報を含むファイル(<u>sample_length_count.txt</u>)の 場合:
 • 正規11 (ワンフル間) Quantile(Bullard 2010) (Ia • 正規11 (ワンブル間) 2010 (Ia • 正規11 (ワンブル間) 2010 (Ia 	列目がそれぞれ、gene ID, 配列長, カウント 数からなるファイルです。
・ 正規化 サンブル間 2群間 複製あり <u>DEGES/</u> in_out	_f <- "sample_length_count.txt" #入力ファイル名を指定してin_fに格納 t_f <- "hoge1.txt" #出力ファイル名を指定してout_fに格納
#入 dat hea sun	、 力ファイルの読み込み ta <- read.table(in_f, header=TRUE, row.names=1, sep="\t", quote="")#in_fで指定 ad(data) #確認してるだけです m(data[,2]) #総リード数を表示
#本 nf_ nf_ dat hea	▲番(正規化) _RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正用)を計算した結果をnf_RPM _RPK <- 1000/data[,1] #正規化係数(RPK補正用)を計算した結果をnf_RPK ta[,2] <- data[,2] * nf_RPM * nf_RPK #正規化係数を各行に掛けた結果を元の位置に代入 ad(data) #確認してるだけです
#フ tmp wri	ファイルに保存 p <- cbind(rownames(data), data) #保存したい情報をtmpに格納 ite.table(tmp, out_f, sep="\t", append=F, quote=F, row.names=F)#tmpの中身を指定
<	

Г

150

		1)data	オブジェクト	<mark>-の、②1</mark>	列目が配
dataオブジェクト		列長情	<mark>報、③2列</mark>	目がカウ	<mark>ント情報。</mark>
		7			
		_			
遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が1 Reads per kilobase per million (RPKM)に変換するやり方を示します。 「ファイル」-「ディレクトリの変更」で解析したいファイルを置いてあるディレクト!	00万だったときのリード数; 川に移動し以下をコビベ。				
1. 配列長とカウント情報を含むファイル(<u>sample_length_count.txt</u>)の場合:					
1-3列目がそれぞれ、gene ID, 配列長, カウント 数からなるファイルです。					
in_f <- "sample_length_count.txt" #入力ファイル名を指述 out_f <- "hoge1.txt" #出力ファイル名を指述	定してin_fに格納 定してout_fに格納				
#入力ファイルの読み込み		_			
data <- read.table(in_t, header=IRUE, row.names=1, sep=") head(data) #確認してるだけです	R Console	-			
sum(data[,2]) #総リード数を表示	1ま入力ファイルの読み込	込み			^
#本番(正規化)	<pre>> data <- read.;</pre>	table (in	heade	r=TRUE,	row.na\$
nf_RPM <- 1000000/sum(data[,2]) #止規化係数(RPM補止 nf_RPK <- 1000/data[1] #正規化係数(RPK補正	> head(data)				#確認\$
data[,2] <- data[,2] * nf RPM * nf RPK #正規化係数を各行に		Length (Count		
head(data) #確認してるだけです	NM_203348.1	3543	3		
#ファイルに保存	NM_001008737.1	1897	19		
#ファイルに床仔 tmp <- cbind(rownames(data), data) #保存したい情報をtm	NM_001037228.1	537	7		
write.table(tmp, out_f, sep="\t", append=F, quote=F, row	NM_033183.2	886	0		
	NM_138368.3	4443	56		
<	NM_152833.2	2844	85		
	> sum(data[,2])				#総り\$
	[1] 2385273				
	>				
	>				
	<				×.
hung 10, 0010					450

		①総リート	[、] 数は2,385,2	273。100万に揃え
)万	る総リートのものと	、数(RPM)補 数が光くい	
□ 「「」」 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」 」		1/2.38527	るの (3)になるの	たろうと予想する。
— 遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数/ Reads per kilobase per million (RPKM)」に変換するやり方を示します。 「ファイル」-「ディレクトリの変更」で解析したいファイルを置いてあるディレク	が100万だったときのリード トリに移動し以下をコビベ。	数;		
1. 配列長とカウント情報を含むファイル(<u>sample_length_count.txt</u>)の場合:				
1-3列目がそれぞれ、gene ID, 配列長, カウント 数からなるファイルです。				
in_f <- "sample_length_count.txt" #入力ファイル名を out_f <- "hoge1.txt" #出力ファイル名を	指定してin_fに格納 指定してout_fに格納			
#入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep= head(data) #確認してるだけで	The suston "")#in f	:7:45¢		
sum(data[,2]) #総リート数で衣示 #本番(正規化)	> #入力ファイルの語 - > data <- rea	売み込み ad.table(:	in <u>f</u> heade:	r=TRUE, row.na\$
nf_RPK <- 1000/data[,1] #正規化係数(RPK補 data[,2] <- data[,2] * nf RPM * nf RPK #正規化係数を各行)) 正)こ))))))	Length	Count	#6筐言恣\$
head(data) #確認してるだけで	₫ NM_203348.1	3543	3	
#ファイルに保存	NM_001008737	.1 1897	19	
tmp <- cbind(rownames(data), data) #保存したい情報を	TM 033183 2	.1 537 886	0	
write.table(tmp, out_t, sep= \t , append=r, quote=r, ro	NM 138368.3	4443	56	
<	NM 152833.2	2844	85	
	> sum(data[,:	2])		#総り\$
	[1] 2385273			
	>			
	21			~
	<			ي <
June 12, 2018				153

	1) <mark>ວ</mark> ກ2ວ	<mark>)の遺伝</mark>	<mark>、子発現し</mark>	<mark>レベルの大小関係</mark>	
配列長(RPK)補正	で… ^に	<mark>:着目。</mark> M_0010	生の力で 08737.1	<mark>シント数だ</mark> のほうが	と19 vs. 7で 多い。しかしなが	
正規化 基礎 RPKM	<mark>ь</mark>	、配列	<mark>長も1,89</mark>	7 / 537 =	= 3.53倍長い。	
ー 遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が: Reads per kilobase per million (RPKM)」に変換するやり方を示します。 「ファイル」-「ディレクトリの変更」で解析したいファイルを置いてあるディレクト	100万だったときの リに移動し以下を	うて、 は大小	記列長祥 関係が	i 逆転する	かったらRPKM値 oはず。	
1. 配列長とカウント情報を含むファイル(<u>sample_length_count.txt</u>)の場合:						
1-3列目がそれぞれ、gene ID, 配列長, カウント 数からなるファイルです。						
in_f <- "sample_length_count.txt" #入力ファイル名を指 out_f <- "hoge1.txt" #出力ファイル名を指	定してin_fに格納 定してout_fに格納					
#入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep="" head(data) #確認してるだけです	R Console	. r7ts≑				
sum(data[,2]) #総りード数で扱示	> #入力ファイルの	の読み込み				
<pre>#本番(正規化) nf_RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正 nf_RPK <- 1000/data[1] #正規化係数(RPK補正</pre>	> data <- r > head(data	ead.tak)	ole(in_	f, heade:	r=TRUE, row.na\$ #確認\$	
data[,2] <- data[,2] * nf_RPM * nf_RPK #正規化係数を各行に	MA 000040 1	Ler	ngth Co	unt		
head(data) #確認してる/にすです	NM_203348.1	7 1 1	3543	19		
#ファイルに保存 tmp く chind(pownomos(doto) doto) #保存したい特報をtm	NM 00103722	8.1	537	$\frac{1}{7}$		
write.table(tmp, out_f, sep="\t", append=F, quote=F, row	NM_033183.2		886	0		
	NM_138368.3	4	1443	56		
<	NM_152833.2	211	2844	85	東郊が日で	
	[1] 2385273	,2])			# 称むり ♀	
	>					
	>					
	<				×	ſ
June 12, 2018					154	1

コード全部を実行した結果のR Console画面 は、こんな感じになります。①がRPKM値です。 最後までコピペ 正規化 | 基礎 | RPKM |遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が100万だったときのリード数; Reads per kilobase per million (RPKM)」に変換するやり方を示します。 |「ファイル」-「ディレクトリの変更」で解析したいファイルを置いてあるディレクトリに移動し以下をコビベ。 1. 配列長とカウント 情報を含むファイル(sample length count.txt)の場合: 1-3列目がそれぞれ、gene ID, 配列長、カウント数からなるファイルです。 in_f <- "sample_length count.txt"</pre> #入力ファイル名を指定してin flc格納 out f <- "hoge1.txt" #出力ファイル名を指定してout flc格納 #入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep=")+" guate_"")#in f 7世年 - - X #確認してるだけです head(data) #総リード数を表示 sum(data[,2]) > data[,2] <- data[,2] * nf PPM * nf RPK #正規\$ #本番(正規化) > head(data) #確認\$ nf RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正 Length Count nf RPK <- 1000/data[,1] #正規化係数(RPK補正 NM 203348.1 3543 0.3549866 data[,2] <- data[,2] * nf RPM * nf RPK #正規化係数を各行に NM 001008737.1 1897 4.1990223 #確認してるだけです head(data) NM 001037228.1 537 5.4649433 #ファイルに保存 NM 033183.2 886 0.0000000 #保存したい情報をtm tmp <- cbind(rownames(data), data)</pre> NM 138368.3 5.2841316 4443 write.table(tmp, out_f, sep="\t", append=F, quote=F, row NM 152833.2 2844 12.5300049 > > #ファイルに保存 > tmp <- cbind(rownames(data), data)</pre> #保存\$ > write.table(tmp, out f, sep="\t", append=F, \$ >

< |

> .:

	①この2つの遺伝子発現レベルの大小関係
Raw count vs RP	
正規化 基礎 RPKM	▲ IME_001008/3/10はつか多いか、配列長袖 正によりRPKM値では大小関係が逆転した。
遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が10 Reads per kilobase per million (RPKM)」に変換するやり方を示します。 「ファイル」ー「ディレクトリの変更」で解析したいファイルを置いてあるディレクトリ 1 配列長とカウンム 情報を含むファイル(cample Jongth count (st)の提合・	^{00万だったとき} このように同一サンプル内での異なる遺伝 ^{IIC移動し以下} 子(feature)間の発現レベルの大小関係を 知りたい場合は、配列長補正は必須です。
1-3列目がそれぞれ、gene ID, 配列長, カウント数からなるファイルです。	
in_f <- "sample_length_count.txt" #入力ファイル名を指述 out_f <- "hoge1.txt" #出力ファイル名を指述	官してin_fに格納 官してout_fに格納
#入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep="\ head(data) #確認してるだけです	t" gusto="")#in f 存地中
sum(data[,2]) #総リード数を表示 # # 総リード数を表示	> data[,2] <- data[,2] * nf_RPM * nf_RPK #正規\$
nf_RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正 nf_RPK <- 1000/data[,1] #正規化係数(RPK補正	Length Count
data[,2] <- data[,2] * nf_RPM * nf_RPK #正規化係数を各行に head(data) #確認してるだけです	NM_203348.1 3343 0.3349866 NM_001008737.1 1897 4.1990223
#ファイルに保存 tmp <- cbind(rownames(data), data) #保存したい情報をtm write.table(tmp, out_f, sep="\t", append=F, quote=F, row	NM_001037228.1 537 5.4649433 NM_033183.2 886 0.0000000 NM_138368.3 4443 5.2841316 NM_152833.2 2844 12.5300049
<	
	<pre>> #JP1ルに保存 > tmp <- cbind(rownames(data), data) #保存\$ > write.table(tmp, out_f, sep="\t", append=F, \$ > </pre>
	< >

Г

ちなみに	①RPKM値の総和は、通常100万ぴったりにはなりません。理由は配列長補正がかかったデータだからです。約45万という結果から、平均の配列
正規化 基礎 RPKM	長が2,000より長かったのだろうと予想できます。
ーー 遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が100 Reads per kilobase per million (RPKM)」に変換するやり方を示します。 「ファイル」ー「ディレクトリの変更」で解析したいファイルを置いてあるディレクトリに	□万だったときのリード数; □移動し以下を⊐ビベ。
1. 配列長とカウント 情報を含むファイル(<u>sample length count.txt</u>)の場合:	
1-3列目がそれぞれ、gene ID, 配列長, カウント 数からなるファイルです。	
in_f <- "sample_length_count.txt" #入力ファイル名を指定 out_f <- "hoge1.txt" #出力ファイル名を指定	して in_f に格納 して out_ fに格納
#入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep="*"	
head(data) #確認してるだけです sum(data[,2]) #総リード数を表示	Length Count
#本番(正規化) N	IM 203348.1 3543 0.3549866
nf_RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正 N	IM 001008737.1 1897 4.1990223
data[,2] <- data[,2] * nf RPM * nf RPK #正規化係数を各行に N	IM_001037228.1 537 5.4649433
head(data) #確認してるだけです N	IM_033183.2 886 0.0000000
#ファイルに保存	IM_138368.3 4443 5.2841316
tmp <- cbind(rownames(data), data) #保存したい情報をtm A	IM_152833.2 2844 12.5300049
write.table(tmp, out_f, sep="\t", append=F, quote=F, row	・ * * ファイルに保存
	<pre>> tmp <- cbind(rownames(data), data) #保存S</pre>
<	<pre>write.table(tmp, out f, sep="\t", append=F, \$</pre>
	<pre>sum(data[,2])</pre>
	[1] 454296
<	

	①配列長の平均値を計算。予想通りですね。
ちなみに	1,000,000 / 2,668.197 = 374.8でないからオ カシイと思われるかもしれませんが、これは
正規化 基礎 RPKM	遺伝子ごとにカウント数が異なるためです。
遺伝子(転写物)ごとのリード数を「配列長が1000 bp (kilobase)で総リード数が1007 Reads per kilobase per million (RPKM)」に変換するやり方を示します。 「ファイル」ー「ディレクトリの 変更」で解析したいファイルを置いてあるディレクトリに	万だったときのリード数; 移動し以下をコピベ。
1. 配列長とカウント情報を含むファイル(<u>sample length count.txt</u>)の場合:	
1-3列目がそれぞれ、gene ID, 配列長, カウント数からなるファイルです。	
in_f <- "sample_length_count.txt" #入力ファイル名を指定し out_f <- "hoge1.txt" #出力ファイル名を指定し	、てin_fl:格納 、てout_fl:格納
#入力ファイルの読み込み data <- read.table(in_f, header=TRUE, row.names=1, sep="\#"	R Console
head(data) #確認してるたけです sum(data[,2]) #総リード数を表示 N	M_001008737.1 1897 4.1990223
#本番(正規化) NI nf_RPM <- 1000000/sum(data[,2]) #正規化係数(RPM補正 #正規化係数(RPK補正 nf RPK <- 1000/data[,1] #正規化係数(RPK補正	M_001037228.1 537 5.4649433 M_033183.2 886 0.0000000
data[,2] <- data[,2] * nf_RPM * nf_RPK #正規化係数を各行に Ni head(data) #確認してるだけです Ni	M_138368.3 4443 5.2841316 M_152833.2 2844 12.5300049
#ファイルに保存 tmp <- cbind(rownames(data), data) #保存したい情報をtm >	#ファイルに保存 tmp {
<pre>write.table(tmp, out_f, sep="\t", append=F, quote=F, row ></pre>	<pre>write.table(tmp, out_f, sep="\t", append=F, \$ sum(data[2])</pre>
	1] 454296
	1] 2668.197
>	
<	ی ۲