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Hiroyoshi Iwata 

aiwata@mail.ecc.u-tokyo.ac.jp 
 

 
<Simple regression analysis> 
Changes in one variable may affect another, such as the relationship between 
breeding and cultivation conditions and the growth of animals and plants. 
One of the statistical methods to model the relationship between these 
variables is regression analysis. By statistically modeling the relationship 
between variables, it becomes possible to understand the causal relationship 
that exists between variables, and to predict one variable from another. 
Here, first, we will discuss simple regression analysis that models the 
relationship between two variables as a “linear relationship”. In this case, the 
mechanism of single regression analysis will be explained using the analysis 
of rice data (Zhao et al. 2011, Nature Communications 2: 467) as an example. 
 
First, read the rice data in the same way as before. Before entering the 
following command, change your R working directory to the directory (folder) 
where the two input files (RiceDiversityPheno.csv, RiceDiversityLine.csv) are 
located.

 
 
Prepare analysis data by extracting only the data used for simple regression 
analysis from the read data. Here we analyze the relationship between plant 
height (Plant.height) and flowering timing (Flowering.time.at.Arkansas). In 
addition, principal component scores (PC1 to PC4) representing the genetic 

> pheno <- read.csv("RiceDiversityPheno.csv") # read csv file 
> line <- read.csv("RiceDiversityLine.csv") 
> line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID") 
  # merge data with NSFTV.ID in line NSFTVID in pheno 
> head(line.pheno)  #	 the first six samples 
（the result is omitted） 



 2 

background to be used later are also extracted. Also, remove samples with 
missing values in advance. 

 
 
First, visualize the relationship between two variables. 

 
As shown in Figure 1, the earlier the flowering time, the shorter the plant 
height, while the later the flowering time, the taller the plant height. 

 
Figure 1. Relationship between flowering timing (x) and plant height (y) 

 
Let's create a simple regression model that explains the variation in plant 
height by the difference in flowering timing. 

 
The result of regression analysis (estimated model) is assigned to “model”. 
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> data <- data.frame( 
  height = line.pheno$Plant.height,	 	 	 	 	  #	 Plant height 
  flower = line.pheno$Flowering.time.at.Arkansas,	 	 #	 flowering time 
  PC1 = line.pheno$PC1,   #	 PC1 
  PC2 = line.pheno$PC2,   #	 2 
  PC3 = line.pheno$PC3,   #	 3 
  PC4 = line.pheno$PC4)   #	 4 
> data <- na.omit(data)   #	 remove missing data 
 

> plot(data$height ~ data$flower) 
   #	 make flower as x and height as y 
   #	 Please be familiar with the expression with ~ 
 

> model <- lm(height ~ flower, data = data) 
 #	 make flower as x and height as y 
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Use the function “summary” to display the result of regression analysis. 

 
 
I will explain the results displayed by executing the above command in order. 

 
This is a repeat of the command you entered earlier. If you get this output 
right after you type it, it does not seem to be useful information. However, if 
you make multiple regression models and compare them as described later, it 
may be useful because you can reconfirm the model employed in the analysis. 
Here, assuming that the plant height is 𝑦" and the flowering timing is 𝑥", 
the regression analysis is performed with the model 

𝑦" = 𝜇 + 𝛽𝑥" + 𝜀". 
As mentioned earlier, 𝑥"  is called independent variable or explanatory 
variable, and 𝑦" is called dependent variable or response variable. 𝜇 and 𝛽 
are called parameters of the regression model, and 𝜀" is called error. Also, 𝜇 
is called population intercept and 𝛽  is called population regression 
coefficient. 
 
In addition, since it is not possible to directly know the true values of the 
parameters	𝜇 and 𝛽 of the regression model, estimation is performed based 
on samples. The estimates of the parameters 𝜇 and 𝛽, which are estimated 
from the sample, are called sample intercept and sample regression 
coefficient, respectively. The values of 𝜇 and 𝛽 estimated from the samples 
are denoted by 𝑚 and 𝑏, respectively. Since 𝑚 and 𝑏 are values estimated 
from the samples, they are random variables that vary depending on the 
samples selected by chance. Therefore, it follows a probability distribution. 
Details will be described later. 
 

> summary(model)  # display the result of regression analysis 

Call: 
lm(formula = height ~ flower, data = data) 
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This output gives an overview of the distribution of residuals. You can use 
this information to check the regression model. For example, the model 
assumes that the expected value (average) of the error is 0. You can check 
whether the median is close to it. You can also check whether the distribution 
is symmetrical around 0, i.e., whether the maximum and minimum or the 
first and third quantiles have almost the same value. In this example, the 
maximum value is slightly larger than the minimum value, but otherwise no 
major issues are found. 
 

 

The estimates of parameters 𝜇 and 𝛽, i.e., 𝑚 and 𝑏, and their standard 
errors, t values and p values are shown. Asterisks at the endo of each line 
represent significance levels. One star represents 5%, two stars 1%, and three 
stars 0.1%. 
 

 

The first line shows the standard deviation of the residuals. This is the value 
represented by 𝑠, where 𝑠- is the estimated value of the error variance 𝜎-. 
The second line is the determination coefficient 𝑅- . This index and the 
adjusted 𝑅- represent how well the regression explain the variation of y. 
The third line is the result of the F test that represents the significance of the 
regression model. It is a test under the hypothesis (null hypothesis) that all 
regression coefficients are 0, and if this p value is very small, the null 
hypothesis is rejected and the alternative hypothesis (regression coefficient is 

Residuals: 
    Min      1Q  Median      3Q     Max  
-43.846 -13.718   0.295  13.409  61.594  
 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 58.05464    6.92496   8.383 1.08e-15 *** 
flower       0.67287    0.07797   8.630  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 

Residual standard error: 19 on 371 degrees of freedom 
Multiple R-squared: 0.1672, Adjusted R-squared: 0.1649  
F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16  
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not 0) is taken to be adopted. 
 
Let's look at the results of regression analysis graphically. First, draw a 
scatter plot and draw a regression line. 
 

 

 
Figure 2. Scatter plot with the regression line 

 
Next, calculate and plot the value of y when the data is fitted to the 
regression model. 
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> plot(data$height ~ data$flower) 
> abline(model, col = "red")	  

> height.fit <- fitted(model) #	 calculation of fitted y values 
> points(data$flower, height.fit, pch = 3, col = "green") 
    #	 fitted values were shown in green 
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Figure 3. The values of y calculated by fitting the model  

all lie on a straight line 
 
An observed value y is expressed as the sum of the variation explained by the 
regression model and the error which is not explained by the regression. Let's 
visualize the error in the figure and check the relationship. 

 

 
Figure 4. The value of y is expressed as the sum of  
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> segments(data$flower, height.fit, 
  	  data$flower, height.fit + resid(model), col = "gray") 
 # segments is a function for draw a line segment between  

# (x1, y1), (x2, y2) 
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the values of y calculated by fitting the model (green points)  
and the residuals of the model (gray line segments) 

 
Let's use a regression model to predict y for x (60, 80, ..., 140), which are not 
actually observed. 

 

 
Fig. 5. All the predicted values will locate on the line 
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> height.pred <- predict(model, data.frame(flower = seq(60, 140, 20))) 
> points(seq(60, 140, 20), height.pred, pch = 2, col = "blue") 
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<Method for calculating the parameters of a regression model> 
Here we will explain how to calculate a regression model. Also, let's 
calculate the regression coefficients while actually using the R command. 
 
As mentioned earlier, the simple regression model is 

. 
This equation implies that the observed value 𝑦" consists of the variation 
𝜇 + 𝛽𝑥" explained by the regression model and the error variation 𝜀" which 
is not explained by the regression model. As you move 𝜇 and 𝛽 in the 
above equation, the error changes accordingly. So how can we find the "best" 
parameters? 
 
There are various criteria for what is considered “optimal”, but here we 
consider minimizing the error across the data. Since errors can take both 
positive and negative values, errors cancels each other in their simple sum. 
So, we consider minimizing the sum of squared error (SSE). That is, 
consider µ and β that minimize the following equation: 
 

𝑆𝑆𝐸 =2𝜀"-
3

"45

=2(𝑦" − (𝜇 + 𝛽𝑥"))-
3

"45

	

              (1) 
 

 
Figure 6. Relationship between regression parameter values  

and residual sum of squares 

yi = µ + βxi + ε i

mu

be
ta

sse
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Figure 6 shows the change in SSE for various values of 𝜇 and 𝛽. The 
commands to draw Figure 6 is a little complicated, but they are as follows: 

 
 
Draw the graph using “plotly” package 

 

 

It should be noted that at the point where SSE becomes the minimum in 
Figure 3, SSE should not change (the slope of the tangent is zero) even when 
𝜇 or 𝛽 changes slightly. Therefore, the coordinates of the minimum point can 
be determined by partially differentiating the equation (1) with 𝜇 and 𝛽, and 
setting the value to zero. That is, 

> x <- data$flower 
> y <- data$height 
> mu <- seq(0, 100, 1) 
> beta <- seq(0, 2, 0.02) 
> sse <- matrix(NA, length(mu), length(beta)) 
> for(i in 1:length(mu)) { 
  for(j in 1:length(beta)) { 
   sse[i, j] <- sum((y - mu[i] - beta[j] * x)^2) 
  } 
 } 
> persp(mu, beta, sse, col = "green") 
 

> # draw with plotly 
> require(plotly) 
> plot_ly(x = mu, y = beta, z = sse) %>% add_surface() 
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𝜕𝑆𝑆𝐸
𝜕𝜇 = 0,

𝜕𝑆𝑆𝐸
𝜕𝛽 = 0	

We should obtain the values of 𝜇  and 𝛽  to satisfy these. The method of 
calculating the parameters of a regression model through minimizing the sum 
of squares of errors in this way is called the least squares method. 
 
Note that µ minimizing SSE is 

𝜕𝑆𝑆𝐸
𝜕𝜇 = −22(𝑦" − 𝜇 − 𝛽𝑥")

3

"45

= 0 

⟺2𝑦"

3

"45

− 𝑛𝜇 − 𝛽2𝑥"

3

"45

= 0 

⟺ 𝜇 =
∑ 𝑦"3
"45

𝑛 − 𝛽
∑ 𝑥"3
"45

𝑛 = 𝑦@ − 𝛽�̅�

 
 
 
Also, 𝛽 minimizing SSE is 

𝜕𝑆𝑆𝐸
𝜕𝛽 = −22𝑥"(𝑦" − 𝜇 − 𝛽𝑥")

3

"45

= 0 

⟺2𝑥"𝑦"

3

"45

− 𝜇2𝑥"

3

"45

− 𝛽2𝑥"-
3

"45

= 0 

⟺2𝑥"𝑦"

3

"45

− 𝑛(𝑦@ − 𝛽�̅�)�̅� − 𝛽2𝑥"-
3

"45

= 0 

⟺2𝑥"𝑦"

3

"45

− 𝑛�̅�𝑦@ − 𝛽 B2𝑥"-
3

"45

− 𝑛�̅�-C = 0 

⟺ 𝛽 =
∑ 𝑥"𝑦"3
"45 − 𝑛�̅�𝑦@
∑ 𝑥"-3
"45 − 𝑛�̅�- =

𝑆𝑆𝑋𝑌
𝑆𝑆𝑋  

 
Here, SSXY and SSX are sum of products of deviation in x and y and deviation 
the sum of squares of deviation in x, respectively. 
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The values of 𝜇 and 𝛽 minimizing SSE are the estimates of the parameters, 
and let the estimates be represented by 𝑚 and 𝑏. That is, 

𝑏 =
𝑆𝑆𝑋𝑌
𝑆𝑆𝑋  

𝑚 = 𝑦@ − 𝑏�̅� 
 
Now let's calculate the regression coefficients based on the above equation. 
First, calculate the sum of products f deviation and the sum of squares of 
deviation. 

 
 
First we calculate the slope 𝑏. 

 
 
Then calculate the intercept 𝜇. 

SSXY = (xi − x )(yi − y )i=1

n∑
= xiyii=1

n∑ − x yii=1

n∑ − y xii=1

n∑ + nx y

= xiyii=1

n∑ − nx y − ny x + nx y

= xiyii=1

n∑ − nx y

SSX = (xi − x )
2

i=1

n∑
= xi

2
i=1

n∑ − 2x xii=1

n∑ + nx 2

= xi
2

i=1

n∑ − 2nx 2 + nx 2

= xi
2

i=1

n∑ − nx 2

> n <- length(x)   #	 substitute sample number for n 
> ssxy <- sum(x * y) - n * mean(x) * mean(y)   
> ssx <- sum(x^2) - n * mean(x)^2    
 

> b <- ssxy / ssx 
> b 
[1] 0.6728746 
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Let's draw a regression line based on the calculated estimates. 

 
Let's make sure that the same regression line was obtained as the function 
lm which we used earlier. 
 
Note that once the regression parameters 𝜇 and 𝛽 are estimated, it is 
possible to calculate 𝑦F", which is the value of y corresponding to a given 𝑥". 
That is, 

𝑦F" = 𝑚 + 𝑏𝑥". 
This makes it possible to calculate the value of y when the model is fitted to 
the observed x, or to predict y if only the value of x is known. Here, let's 
calculate the value of y when the model is fitted to the observed x, and draw 
scatter points on the figure drawn earlier.  
 

 

> m <- mean(y) - b * mean(x) 
> m 
[1] 58.05464 
 

> plot(y ~ x) 
> abline(m, b) # draw the line of intercept m and slope b 
 

> y.hat <- m + b * x   
> lim <- range(c(y, y.hat))  
> plot(y, y.hat, xlab = "Observed", ylab = "Fitted", xlim = lim, ylim = lim) 
> abline(0, 1) 
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Figure 7. Relationship between observed and fitted values 

 
Let's calculate the correlation coefficient between the two to find the degree 
of agreement between the observed and fitted values. 

 

 
In fact, the square of this correlation coefficient is the proportion of the 
variation of 𝑦 explained by the regression (coefficient of determination, 𝑅- 
value). Let's compare these two statistics. 
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> cor(y, y.hat) 
[1] 0.408888 
 

> cor(y, y.hat)^2 
[1] 0.1671894 
> summary(model) 
（omitted） 
Multiple R-squared: 0.1672, Adjusted R-squared: 0.1649 
（omitted） 
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<Significance test of a regression model> 
When the linear relationship between variables is strong, a regression line 
fit well to the observations, and the relationship between both variables can 
be well modeled by a regression line. However, when a linear relationship 
between variables is not clear, modeling with a regression line does not 
work well. Here, as a method to objectively confirm the goodness of fit of the 
estimated regression model, we will explain a test using analysis of 
variance. 
 
First, let's go back to the simple regression again. 

 
 
The significance of the obtained regression model can be tested using the 
function anova. 

 
As a result of the analysis of variance, the term of flowering time is highly 
significant (p <0.001), and the goodness of fit of the regression model that the 
flowering timing influences plant height is confirmed. 
 
Analysis of variance for regression models involves the following calculations: 
First of all, “Sum of squares explained by regression” can be calculated as 
follows. 

𝑆𝑆𝑅 =2(𝑦F" − 𝑦@)-
3

"45

	

model <- lm(height ~ flower, data = data) 

> anova(model) 
Analysis of Variance Table 
 
Response: height 
           Df Sum Sq Mean Sq F value    Pr(>F)     
flower      1  26881 26881.5  74.479 < 2.2e-16 *** 
Residuals 371 133903   360.9                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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=2G𝜇 + 𝑏𝑥" − (𝜇 + 𝑏�̅�)H
-

3

"45

	

= 𝑏-2(𝑥" − �̅�)-
3

"45

	

= 𝑏- ∙ 𝑆𝑆𝑋 = 𝑏 ∙ 𝑆𝑆𝑋𝑌 

 
Also, the sum of squares of deviation from the mean of the observed values y 
is expressed as the sum of the sum of squares SSR explained by the regression 
and the residual sum of squares SSE. That is, 
 

𝑆𝑆𝑌 =2(𝑦" − 𝑦@)-
3

"45

	

=2(𝑦" − 𝑦F" + 𝑦F" − 𝑦@)-
3

"45

	

=2(𝑦" − 𝑦F")-
3

"45

+2(𝑦F" − 𝑦@)-
3

"45

	

= 𝑆𝑆𝐸 + 𝑆𝑆𝑅	 
 

∵ 22(𝑦" − 𝑦F")(𝑦F" − 𝑦@)
3

"45

	

= 22(𝑦" − 𝑚 − 𝑏𝑥")G𝑚 + 𝑏𝑥" − (𝑚 + 𝑏�̅�)H
3

"45

	

= 2𝑏2(𝑦" − (𝑦@ − 𝑏�̅�) − 𝑏𝑥")(𝑥" − �̅�)
3

"45

	

= 2𝑏2G𝑦" − 𝑦@ − 𝑏(𝑥" − �̅�)H(𝑥" − �̅�)
3

"45

	

= 2𝑏(𝑆𝑆𝑋𝑌 − 𝑏 ∙ 𝑆𝑆𝑋) = 0	

 
Let's actually calculate it using the above equation. First, calculate SSR and 
SSE. 
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Next, calculate the mean squares, which is of the sum of squares divided by 
the degrees of freedom. 

 

 
Finally, the mean square of the regression is divided by the mean square of 
the error to calculate the F value. Furthermore, calculate the p value 
corresponding to the calculated F value. 

 

The results obtained are in agreement with the results calculated earlier 
using the function anova. 
 
The results of regression analysis are included in the results of regression 
analysis displayed using the function “summary”. 

> ssr <- b * ssxy 
> ssr 
[1] 26881.49 
> ssy <- sum(y^2) - n * mean(y)^2 
> sse <- ssy - ssr 
> sse 
[1] 133903.2 
 

> msr <- ssr / 1 
> msr 
[1] 26881.49 
> mse <- sse / (n - 2) 
> mse 
[1] 360.9251 
 

> f.value <- msr / mse 
> f.value 
[1] 74.47943 
>  
> 1 - pf(f.value, 1, n - 2) 
[1] 2.220446e-16 
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"Residual standard error" is the square root of the mean square of the 
residual. 

 

 
"Multiple R-squared" (𝑅-) is a value called the coefficient of determination, 
which is the ratio of SSR to SSY. 

 

 
"Adjusted R-squared" (𝑅KLM- ) is a value called the adjusted coefficient of 
determination, which can be calculated as follows. 

 

Also, "F-statistic" matches the F value and its p value which are expressed 
as the effect of flowering time in the analysis of variance. In addition, the t 
value calculated for the regression coefficient of the flowering time term is 
squared to obtain the F value (8.6302 = 74.477). 
 
𝑅- and 𝑅KLM-  can also be expressed using SSR, SSY, and SSE as follows. 

> summary(model) 
（omitted） 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 58.05464    6.92496   8.383 1.08e-15 *** 
flower       0.67287    0.07797   8.630  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 19 on 371 degrees of freedom 
Multiple R-squared: 0.1672, Adjusted R-squared: 0.1649  
F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16 

> sqrt(mse) 
[1] 18.99803 
 

> ssr / ssy 
[1] 0.1671894 
 

> (ssy / (n - 1) - mse) / (ssy / (n - 1)) 
[1] 0.1649446 
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𝑅- =
𝑆𝑆𝑅
𝑆𝑆𝑌 = 1 −

𝑆𝑆𝐸
𝑆𝑆𝑌 

𝑅KLM- = 1 −
𝑛 − 1
𝑛 − 𝑝 ∙

𝑆𝑆𝐸
𝑆𝑆𝑌 

Here, p is the number of parameters included in the model, and p = 2 for a 
simple regression model. It can be seen that 𝑅KLM-  has a larger amount of 
adjustment (the residual sum of squares is underestimated) as the number 
of parameters included in the model increases. 
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<Distribution that estimated value of regression coefficient follows> 
As mentioned earlier, the estimates 𝑏 and 𝑚 of the regression coefficients 
𝜇 and 𝛽 are values estimated from samples and are random variables that 
depend on the samples chosen by chance. Thus, estimates 𝑏 and 𝑚 have 
probabilistic distributions. Here we consider the distributions that the 
estimates follow. 
 
First, think about 𝑏. We can express 𝑏 as 

𝑏 =2
(𝑥" − �̅�)(𝑦" − 𝑦@)

𝑆𝑆𝑋

3

"45

	

= 2
(𝑥" − �̅�)𝑦"
𝑆𝑆𝑋

3

"45

− 𝑦@2
(𝑥" − �̅�)
𝑆𝑆𝑋

3

"45

	

	=
1
𝑆𝑆𝑋2𝑦"(𝑥" − �̅�)

3

"45

 

 
Thus, the mean of the estimate 𝑏 is 

𝔼(𝑏) =
1
𝑆𝑆𝑋 𝔼B2𝑦"(𝑥" − �̅�)

3

"45

C	

=
1
𝑆𝑆𝑋 𝔼B2

(𝜇 + 𝛽𝑥" + 𝜀")(𝑥" − �̅�)
3

"45

C	

=
1
𝑆𝑆𝑋 𝔼B2

(𝜇∗ + 𝛽(𝑥" − �̅�) + 𝜀")(𝑥" − �̅�)
3

"45

C	

=
1
𝑆𝑆𝑋 R𝜇

∗2(𝑥" − �̅�)
3

"45

+ 𝛽2(𝑥" − �̅�)-
3

"45

+ 𝔼B2𝜀"(𝑥" − �̅�)
3

"45

CS	

=
1
𝑆𝑆𝑋

[0 + 𝛽𝑆𝑆𝑋 + 0] = 𝛽 

 
That is, the mean of the estimated value 𝑏 matches the true value 𝛽. Here, 
𝜇∗ is a constant term when 𝑦" is regressed not to 𝑥" but to 𝑥" − �̅�, 

𝑦" = 𝜇∗ + 𝛽(𝑥" − �̅�) 
 
The variance of the estimated value 𝑏 is 
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𝕍(𝑏) =
1

𝑆𝑆𝑋- 𝕍B2𝑦"(𝑥" − �̅�)
3

"45

C	

=
1

𝑆𝑆𝑋-2
(𝑥" − �̅�)-

3

"45

𝕍(𝑦")	

=
∑ (𝑥" − �̅�)-3
"45

𝑆𝑆𝑋- 𝜎- =
𝜎-

𝑆𝑆𝑋	 

 
Here, 𝜎- is the residual variance 𝜎- = 𝕍(𝑦") = 𝕍(𝑒"). 
 
The estimated value b is a linear combination of 𝑦" 

𝑏 =2𝑎"𝑦"

3

"45

, 𝑎" =
𝑥" − �̅�
𝑆𝑆𝑋  

Since 𝑦" follows a normal distribution, its linear combination 𝑏 also follows 
a normal distribution. That is, 

𝑏~𝑁(𝛽,
𝜎-

𝑆𝑆𝑋) 

 
On the other hand, the estimated value 𝑚 can be expressed as 𝑚 = 𝑦@ − 𝛽�̅�. 
 
Thus, the average is 

𝔼(𝑚) = 𝔼(𝑦@ − 𝛽�̅�) = 𝜇 + 𝛽�̅� − 𝛽�̅� = 𝜇 
The mean of the estimated value 𝑚 also matches the true value 𝜇. 
 
Then the variance is 

𝕍(𝑚) = 𝕍(𝑦@) + 𝕍(𝑏�̅�) − 2ℂov(𝑦@, 𝑏�̅�) =
𝜎-

𝑛 + (�̅�)-
𝜎-

𝑆𝑆𝑋 − 2 ∙ 0 = 𝜎- ^
1
𝑛 +

(�̅�)-

𝑆𝑆𝑋_ 

 
Since 𝑦" follows normal distribution, 𝑚 represented as 𝑚 = 𝑦@ − 𝛽�̅� also 
follows normal distribution. That is, 

𝑚~𝑁(𝜇, 𝜎- ^
1
𝑛 +

(�̅�)-

𝑆𝑆𝑋_)	
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Although the true value of the error variance 𝜎- is unknown, it can be 
replaced by the residual variance 𝑠-. That is, 

𝑠- 	= 	
𝑆𝑆𝐸
𝑛 − 2	

This value is the mean square of the residuals calculated during the 
analysis of variance. 
 
At this time, statistics on b 

𝑡	 = 	
𝑏 − 𝛽a
𝑠 √𝑆𝑆𝑋⁄

		

follows the t distribution with n – 2 degrees of freedom 
𝐻a:	𝛽 = 𝛽a 

under the null hypothesis. 
 
At this time, an interval in which 𝛽 (that is, 𝛽a) is included with a 
probability of 1 − 𝛼, that is, a (1 − 𝛼) 100% confidence interval is calculated 
as follows. 

g𝑏 − 𝑡3h-,5hi-
𝑠

√𝑆𝑆𝑋
, 𝑏 + 𝑡3h-,5hi-

𝑠
√𝑆𝑆𝑋

j 

Here, 𝑡3h-,5hi/- is the rejection limits at both sides of the 5% (α = 0.05) or 
the 1% (α = 0.01) level in the degree of freedom. 
 
Also for 𝑚, statistics 

𝑡	 = 	
𝑚 − 𝜇a

𝑠l1𝑛 +
(�̅�)-
𝑆𝑆𝑋

		

follows the t distribution with n – 2 degrees of freedom 
𝐻a:	𝑚 = 𝜇a 

under the null hypothesis. 
 
At this time, an interval in which 𝜇 (that is, 𝜇a) is included with a 
probability of 1-α, that is, a (1-α) 100% confidence interval is calculated as 
follows. 
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m𝑚 − 𝑡3h-,5hi-
𝑠n
1
𝑛 +

(�̅�)-

𝑆𝑆𝑋 , 𝑚 + 𝑡3h-,5hi-
𝑠n
1
𝑛 +

(�̅�)-

𝑆𝑆𝑋o 

Now let's calculate the test and confidence intervals for 𝑏 and 𝑚 that we 
have found so far. 
 
First, test for null hypothesis H_0: β = 0 for b. 

 
 
The results of this test were already displayed as regression analysis 
results. 

 

 
The hypothesis test performed above can be performed for any 𝛽a. For 
example, let's test for null hypothesis 𝐻a:	𝛽 = 0.5.  

 
The result is significant at the 5% level. This means that 0.5 is not included 
in the 95% confidence interval mentioned above. 
 
Now let us test and calculate confidence intervals for 𝑚. First, let's test the 
null hypothesis 𝐻a:	𝑚 = 0. 

> t.value <- (b - 0) / sqrt(mse/ssx) 
> t.value 
[1] 8.630147 
> 2 * (1 - pt(t.value, n - 2)) 
[1] 2.220446e-16 
 

> summary(model) 
（省略） 
oefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 58.05464    6.92496   8.383 1.08e-15 *** 
flower       0.67287    0.07797   8.630  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
（省略） 

> t.value <- (b - 0.5) / sqrt(mse/ssx) 
> t.value 
[1] 2.217253 
> 2 * (1 - pt(t.value, n - 2)) 
[1] 0.02721132 
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This result was also already calculated. 

 

(It may be due to the rounding error that the p value does not match 
completely) 
 
Finally, let's test for the null hypothesis 𝐻a:	𝑚 = 50. 

 

The result was not significant even at the 5% level. This means that 50 is 
"included" in the 95% confidence interval mentioned above. 
 
  

> t.value <- (m  - 0) / sqrt(mse * (1/n + mean(x)^2 / ssx)) 
> t.value 
[1] 8.383389 
> 2 * (1 - pt(t.value, n - 2)) 
[1] 1.110223e-15 

> summary(model) 
（省略） 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 58.05464    6.92496   8.383 1.08e-15 *** 
flower       0.67287    0.07797   8.630  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
（省略） 

> t.value <- (m  - 50) / sqrt(mse * (1/n + mean(x)^2 / ssx)) 
> t.value 
[1] 1.163132 
> 2 * (1 - pt(t.value, n - 2)) 
[1] 0.2455237 
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<Confidence intervals for regression coefficients and fitted values> 
 
Function “predict” has various functions. First, let's use the function with 
the estimated regression model. Then, the values of y when the model fitted 
to observed data are calculated. The values are exactly the same as 
calculated by the function “fitted”. 

 
 
By setting the options “interval” and “level”, you can calculate the 
confidence interval of y at the specified significance level when fitting the 
model. 

 
 

Let's vidualize the confidence interval of y using the function “predict”. 

 

> pred <- predict(model) 
> head(pred) 
       1        2        3        4        5        6  
108.5763 118.2769 121.6413 116.9312 117.9966 128.7065  
> head(fitted(model)) 
       1        2        3        4        5        6  
108.5763 118.2769 121.6413 116.9312 117.9966 128.7065  
 

> pred <- predict(model, interval = "confidence", level = 0.95) 
> head(pred) 
       fit      lwr      upr 
1 108.5763 105.8171 111.3355 
2 118.2769 116.3275 120.2264 
3 121.6413 119.4596 123.8230 
4 116.9312 114.9958 118.8665 
5 117.9966 116.0540 119.9391 
6 128.7065 125.4506 131.9623 
 

> pred <- data.frame(flower = 50:160) 
> pc <- predict(model, int = "c", newdata = pred) 
> plot(data$height ~ data$flower) 
> matlines(pred$flower, pc, lty = c(1, 2, 2), col = "red") 
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Figure 8. Confidence interval of y when fitting the model 
The interval becomes narrow at a point close to the mean of x, while 

becomes wider at a point far from the mean 
 
The confidence interval of 𝑦 can be calculated as follows. First, consider 
estimating 𝑦 given 𝑥∗, that is, 𝑦r = 𝔼(𝑦|𝑥 = 𝑥∗) = 𝜇 + 𝛽𝑥∗. Assuming that 
the regression coefficient estimated from the sample is 𝑏, the estimated 
value of 𝑦r is 𝑦Fr = 𝑚 + 𝑏𝑥∗. Here, since 𝑚 and 𝑏 are random variables, 
𝑦Fr is also a random variable. 𝑦Fr is represented as 

𝑦Fr = 𝑚 + 𝑏𝑥∗ = 𝑦@ + 𝑏(𝑥∗ − �̅�) 
And its variance is calculated as: 

𝑉(𝑦Fr) = 𝑉(𝑦@) + (𝑥∗ − �̅�)-𝑉(𝑏)	

=
𝜎-

𝑛 +
(𝑥∗ − �̅�)-𝜎-

𝑆𝑆𝑋 	

Replacing the residual variance 𝑠- calculated from the sample for the 
residual variance 𝜎-, as before, statistics 

𝑡	 = 	
𝑦Fr − 𝑦r

𝑠l1𝑛 +
(𝑥∗ − �̅�)-
𝑆𝑆𝑋
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Follows the 𝑡 distribution with 𝑛	– 	2 degrees of freedom. Therefore, the 
interval in which the true value 𝑦r = 𝜇 + 𝛽𝑥∗ is included with the 
probability of 1-α, that is, the (1-α) 100% confidence interval is calculated as 
follows. 

m𝑦Fr − 𝑡3h-,5hi-
𝑠n
1
𝑛 +

(𝑥∗ − �̅�)-

𝑆𝑆𝑋 , 𝑦Fr + 𝑡3h-,5hi-
𝑠n
1
𝑛 +

(𝑥∗ − �̅�)-

𝑆𝑆𝑋 o 

 
Now, let’s draw the confidence intervals of the estimate of 𝑦 given 𝑥∗ 
according to the above equation. 

 
Let's confirm that the same figure as Figure 8 is drawn. 
 
 
  

> x <- 50:160 
> tv <- qt(0.975, n - 2) 
> y.hat <- mu + beta * x 
> mean.x <- mean(data$flower) 
> y.hat.upper <- y.hat + tv * sqrt(mse) * sqrt(1/n + (x - mean.x)^2 / ssx) 
> y.hat.lower <- y.hat - tv * sqrt(mse) * sqrt(1/n + (x - mean.x)^2 / ssx) 
> plot(data$height ~ data$flower) 
> matlines(x, cbind(y.hat, y.hat.upper, y.hat.lower),  
   lty = c(1, 2, 2), col = "red") 
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<Polynomial regression model and multiple regression model> 
So far, we have applied to the data a regression model that represents the 
relationship between the two variables with a straight line. Let's extend the 
regression model a bit. 
 
First, let's perform regression by a method called polynomial regression. In 
polynomial regression, 

𝑦" = 𝜇 + 𝛽5𝑥" + 𝛽-𝑥"- + ⋯+ 𝛽w𝑥"
w + 𝜀" 

In this way, regression is performed using the second or higher order terms 
of 𝑥. First, let's perform regression using the first and second terms of 𝑥. 
 

 
It can be seen that the proportion of variation of y (coefficient of 
determination 𝑅-) explained by the polynomial regression model is larger 
than that of the simple regression model.  
 
Although this will be mentioned later, you should not judge that the 
polynomial regression model is excellent only with this value. This is 
because a polynomial regression model has more parameters than a simple 
regression model, and you have more flexibility when fitting the model to 
data. It is easy to improve the fit of the model to the data by increasing the 
flexibility. In extreme cases, the model can be completely fitted to the data 
with as many parameters as the size of data (In that case, the coefficient pf 
determination 𝑅- completely matches 1). Therefore, careful selection of 
some statistical criteria is required when selecting the best model. This will 
be discussed later. 
 
Now let's draw the result of polynomial regression with confidence intervals. 
 

> model.quad <- lm(height ~ flower + I(flower^2), data = data) 
> summary(model.quad) 
（omitted） 
Multiple R-squared: 0.1915, Adjusted R-squared: 0.1871  
（omitted） 
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Figure 9. Second-order polynomial regression results.  

When the timing of flowering is over 120 days after sowing,  
it can be seen that the reliability is low. 

 
Let's visually compare the explanatory power of the polynomial regression 
model and the simple regression model. 
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> pred <- data.frame(flower = 50:160) 
  #	 set the range for the calculation (giving x) 
> pc <- predict(model.quad, int = "c", newdata = pred) 
  #	 calculate fitted values for the x 
> plot(data$height ~ data$flower)  #	 draw a scatterplot 
> matlines(pred$flower, pc, lty = c(1, 2, 2), col = "red") 
 #	 draw the polynomial regression curve and their confidence interval 

> lim <- range(c(data$height, fitted(model), fitted(model.quad))) 
> plot(data$height, fitted(model),  
+   xlab = "Observed", ylab = "Expected", 
+    xlim = lim, ylim = lim) 
> points(data$height, fitted(model.quad), col = "red") 
> abline(0, 1) 
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Figure 10. For a simple regression model (black) and  

a second-order polynomial model (red) 
Relationship between fitted value and observed value 

 
Let's test if the improvement in the explanatory power of the second-order 
polynomial model is statistically significant. The significance is tested with 
F test whether the difference between the residual sum of squares of the two 
models is sufficiently large compared to the residual sum of squares of the 
model containing the other (here, Model 2 contains Model 1). 

 
The results show that the difference in residual variance between the two 
models is highly significant (p <0.001). In other words, Model 2 has 
significantly more explanatory power than Model 1. 
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> anova(model, model.quad) 
Analysis of Variance Table 
 
Model 1: height ~ flower 
Model 2: height ~ flower + I(flower^2) 
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1    371 133903                                   
2    370 129999  1    3903.8 11.111 0.0009449 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Now let's fit a third-order polynomial regression model and test if it is 
significantly more descriptive than a second-order model. 

 
The 3rd-order model has a slightly better explanatory power than the 2nd-
order model. However, the difference is not statistically significant. In other 
words, it turns out that extending a second-order model to a third-order 
model is not a good idea. 
 
Finally, let's apply the multiple linear regression model. 
In multiple linear regression, 
 𝑦" = 𝜇 + 𝛽5𝑥5" + 𝛽-𝑥-" + ⋯+ 𝛽w𝑥w" + 𝜀" 
In this way, regression is performed using multiple explanatory variables 
( ). In the first lecture, I confirmed in the graph that the height 

varies depending on the difference in genetic background. Here, we will 
create a multiple regression model that explains plant height using genetic 
backgrounds (PC1 to PC4) expressed as the scores of four principal 
components. 

x1i,x2i,..., xpi

> model.cube <- lm(height ~ flower + I(flower^2) + I(flower^3), data = data) 
> summary(model.cube) 
（omitted） 
Multiple R-squared: 0.1931, Adjusted R-squared: 0.1866  
（omitted） 
> anova(model.quad, model.cube) 
Analysis of Variance Table 
 
Model 1: height ~ flower + I(flower^2) 
Model 2: height ~ flower + I(flower^2) + I(flower^3) 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1    370 129999                            
2    369 129729  1    270.17 0.7685 0.3813 
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You can see that the coefficient of determination of the regression model is 
higher than that of the polynomial regression model. The results of analysis 
of variance show that all principal components are significant and need to 
be included in the regression. 
 
Finally, let's combine the polynomial regression model with the multiple 
regression model. 

 
The effect of the genetic background on plant height is very large, but it can 
also be seen that the model's explanatory power improves if the effect of 
flowering timing is also added. 
 

> model.wgb <- lm(height ~ PC1 + PC2 + PC3 + PC4, data = data) 
> summary(model.wgb) 
（omitted） 
Multiple R-squared: 0.3388, Adjusted R-squared: 0.3316  
（omitted） 
> anova(model.wgb) 
（omitted） 
Response: height 
           Df Sum Sq Mean Sq F value    Pr(>F)     
PC1         1  28881 28881.3  99.971 < 2.2e-16 *** 
PC2         1   5924  5924.2  20.506 8.040e-06 *** 
PC3         1   6723  6723.2  23.272 2.063e-06 *** 
PC4         1  12942 12942.3  44.799 8.163e-11 *** 
Residuals 368 106314   288.9                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

> model.all <- lm(height ~ flower + I(flower^2) + PC1 + PC2 + PC3 + PC4,  
  data = data) 
> summary(model.all) 
（omitted） 
Multiple R-squared: 0.4045, Adjusted R-squared: 0.3947 
（omitted） 
> anova(model.all, model.wgb) 
Analysis of Variance Table 
 
Model 1: height ~ flower + I(flower^2) + PC1 + PC2 + PC3 + PC4 
Model 2: height ~ PC1 + PC2 + PC3 + PC4 
  Res.Df    RSS Df Sum of Sq      F   Pr(>F)     
1    366  95753                                  
2    368 106314 -2    -10561 20.184 4.84e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Lastly, let's compare the first regression model and the last created multiple 
regression model by plotting the scatter of the observed value and the fitted 
value. 

 
As a result, we can see that the explanatory power of the model is 
significantly improved by considering the genetic background and the 
second order terms. However, on the other hand, it can also be seen that the 
two varieties and lines whose flowering timing is late (after 180 days) can 
not be sufficiently explained even by the finally obtained model. There may 
be room to improve the model, such as adding new factors as independent 
variables. 

 
Figure 11. Comparison of simple regression model (black) and multiple 

regression model (red) 
Horizontal axis is observed value and vertical axis is model fitted value 
In the sample in the blue circle, the badness of fit has not been resolved 
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> lim <- range(data$height, fitted(model), fitted(model.all)) 
> plot(data$height, fitted(model), xlab = "Observed",  
  ylab = "Fitted", xlim = lim, ylim = lim) 
> points(data$height, fitted(model.all), col = "red") 
> abline(0,1) 
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<Experimental design and analysis of variance> 
When trying to draw conclusions based on experimental results, it is always 
the presence of errors in the observed values. Errors are inevitable no 
matter how precise the experiment is, especially in field experiments, errors 
are caused by small environmental variations in the field. Therefore, 
experimental design is a method devised to obtain objective conclusions 
without being affected by errors. 
 
First of all, what is most important in planning experiments is the Fisher's 
three principles: 
(1) Replication: In order to be able to perform statistical tests on 
experimental results, we repeat the same process. For example, evaluate 
one variety multiple times. The experimental unit equivalent to one 
replication is called a plot. 
(2) Randomization: An operation that makes the effect of errors random is 
called randomization. For example, in the field test example, varieties are 
randomly assigned to plots in the field using dice or random numbers. 
(3) Local control: Local control means dividing the field into blocks and 
managing the environmental conditions in each block to be as homogeneous 
as possible. In the example of the field test, the grouped area of the field is 
divided into small units called blocks to make the cultivation environment 
in the block as homogeneous as possible. It is easier to homogenize each 
block rather than homogenizing the cultivation environment of the whole 
field. 
 
The experimental method of dividing the field into several blocks and 
making the cultivation environment as homogeneous as possible in the 
blocks is called the randomized block design. In the randomized block 
design, the field is divided into blocks, and varieties are randomly assigned 
within each block. The number of blocks is equal to the number of 
replications. 
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Next, I will explain the method of statistical test in the randomized block 
design through a simple simulation. First, let's set the "seed" of the random 
number before starting the simulation. A random seed is a source value for 
generating pseudorandom numbers. 

 
 
Let's start the simulation. Here, consider a field where 16 plots are 
arranged in 4 × 4. And think about the situation that there is a slope of the 
soil fertility in the field. 

 

However, it is assumed that there is an effect of +4 where the soil fertility is 
high and -4 where it is low. 
 
Here, we arrange blocks according to Fisher's three principles. The blocks 
are arranged to reflect the difference in the soil fertility well. 

 
 
Next, randomly arrange varieties in each block according to Fisher's three 
principles. Let's prepare for that first. 

> set.seed(123) 

> field.cond <- matrix(rep(c(4,2,-2,-4), each = 4), nrow = 4) 
> field.cond 
     [,1] [,2] [,3] [,4] 
[1,]    4    2   -2   -4 
[2,]    4    2   -2   -4 
[3,]    4    2   -2   -4 
[4,]    4    2   -2   -4 
 

> block <- c("I", "II", "III", "IV") 
> blomat <- matrix(rep(block, each = 4), nrow = 4) 
> blomat 
     [,1] [,2] [,3]  [,4] 
[1,] "I"  "II" "III" "IV" 
[2,] "I"  "II" "III" "IV" 
[3,] "I"  "II" "III" "IV" 
[4,] "I"  "II" "III" "IV" 
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Let's allocate varieties randomly to each block. 

 
 
Consider the differences in genetic values of the four varieties. Let the 
genetic values of the A to D varieties be +4, +2, -2, -4, respectively. 

 
 
Environmental variations are generated as random numbers from a normal 
distribution with an average of 0 and a standard deviation of 2.5. 

 
Although the above command generates random numbers, I think you will 
get the same value as the textbook. This is because the random numbers 

> variety <- c("A", "B", "C", "D")  #	 4 varieteis 
> sample(variety) 
[1] "B" "C" "A" "D" # function “sample” can sort entries randomly 
> sample(variety)   

# each time you execute the function, the order is randomized 
[1] "D" "A" "B" "C" 

> varmat <- matrix(c(sample(variety), sample(variety),  
    sample(variety), sample(variety)), nrow = 4) 
> varmat  
     [,1] [,2] [,3] [,4] 
[1,] "C"  "C"  "A"  "D"  
[2,] "B"  "B"  "D"  "C"  
[3,] "D"  "A"  "C"  "B"  
[4,] "A"  "D"  "B"  "A"  
 

> g.value <- matrix(NA, 4, 4) 
> g.value[varmat == "A"] <- 4 
> g.value[varmat == "B"] <- 2 
> g.value[varmat == "C"] <- -2 
> g.value[varmat == "D"] <- -4 
> g.value 
     [,1] [,2] [,3] [,4] 
[1,]   -2   -2    4   -4 
[2,]    2    2   -4   -2 
[3,]   -4    4   -2    2 
[4,]    4   -4    2    4 
 

> e.value <- matrix(rnorm(16, sd = 2.5), 4, 4) 
> e.value 
           [,1]      [,2]       [,3]       [,4] 
[1,]  1.0019286  1.244626 -2.6695593 -1.5625982 
[2,]  0.2767068 -4.916543 -0.5449373 -4.2167333 
[3,] -1.3896028  1.753390 -2.5650111  2.0944676 
[4,]  4.4672828 -1.181979 -1.8222281  0.3834328 
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generated are pseudo random numbers and are generated according to 
certain rules. Note that if you change the value of the random seed, the 
same value as above will not be generated. Also, different random numbers 
are generated each time you run. 
 
Finally, the overall average, the gradient of soil fertility, the genetic values 
of varieties, and the variation due to the local environment are added 
together to generate a simulated observed value of the trait. 

 
 
Let's visualize the simulated data. 
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> grand.mean <- 50 
> simyield <- grand.mean + field.cond + g.value + e.value 
> simyield 
         [,1]     [,2]     [,3]     [,4] 
[1,] 53.00193 51.24463 49.33044 40.43740 
[2,] 56.27671 49.08346 43.45506 39.78327 
[3,] 48.61040 57.75339 43.43499 50.09447 
[4,] 62.46728 46.81802 48.17777 50.38343 
 

> op <- par(mfrow = c(2, 2)) 
> image(t(field.cond)) 
> for(i in 1:4) text((i-1) / 3, 0:3 / 3, blomat[,i]) 
> image(t(g.value)) 
> for(i in 1:4) text((i-1) / 3, 0:3 / 3, varmat[,i]) 
> image(t(e.value)) 
> image(t(simyield)) 
> for(i in 1:4) text((i-1) / 3, 0:3 / 3, paste(varmat[,i], blomat[,i])) 
> par(op) 
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Figure 12. Gradient of soil fertility (upper left), the genetic values of 
varieties (upper right), Environmental variation (lower left) and observed 

values of the trait (lower right) 
 
Before performing analysis of variance, reshape data in the form of matrices 
into vectors and rebundle them. 

 

 
Let's plot the created data using the function interaction.plot.

 

> as.vector(simyield) 
 [1] 53.00193 56.27671 48.61040 62.46728 51.24463 49.08346 57.75339 46.81802 
49.33044 43.45506 43.43499 
[12] 48.17777 40.43740 39.78327 50.09447 50.38343 
> as.vector(varmat) 
 [1] "C" "B" "D" "A" "C" "B" "A" "D" "A" "D" "C" "B" "D" "C" "B" "A" 
> as.vector(blomat) 
 [1] "I"   "I"   "I"   "I"   "II"  "II"  "II"  "II"  "III" "III" "III" "III" 
"IV"  "IV"  "IV"  "IV"  
> simdata <- data.frame(variety = as.vector(varmat),  
  block = as.vector(blomat), yield = as.vector(simyield)) 
> simdata 
（omitted） 

> interaction.plot(simdata$block, simdata$variety, simdata$yield) 
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Fig. 13. Simulated yield data in varieties and blocks. 
 
It can be seen that the difference between blocks is as large as the difference 
between varieties 

 
Let's perform an analysis of variance using the prepared data. 

 
It can be seen that both the block and variety effects are highly significant. 
Note that the former is not the subject of verification, and is incorporated 
into the model in order to estimate the variety effect correctly. 
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> res <- aov(yield ~ block + variety, data = simdata) 
> summary(res) 
            Df Sum Sq Mean Sq F value  Pr(>F)    
block        3 257.77   85.92   13.45 0.00113 ** 
variety      3 243.02   81.01   12.68 0.00139 ** 
Residuals    9  57.48    6.39                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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The analysis of variance described above can also be performed using the 
function “lm” for estimating regression models. 

 
 
In the function “lm”, analysis of variance is performed within the framework 
of regression analysis using dummy variables. In addition, you can check 
the setting of the dummy variables by using the function model.matrix.  

  

> res <- lm(yield ~ block + variety, data = simdata) 
> anova(res) 
Analysis of Variance Table 
 
Response: yield 
          Df  Sum Sq Mean Sq F value   Pr(>F)    
block      3 257.769  85.923  13.453 0.001126 ** 
variety    3 243.017  81.006  12.683 0.001391 ** 
Residuals  9  57.484   6.387                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 

> model.matrix(res) 
（omitted） 
> summary(res) 
（omitted） 
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<How to perform the analysis of variance> 
Now, let xij be the observed value of the trait in the jth block of the ith breed. 
Then, xij can be written as follows. 

 
Here, , , represents the mean for the ith variety, the mean for the 

jth plot, and the total mean, respectively. That is, 

  

 

 

Here, m is the number of varieties and r is the number of blocks. 
 
The sum of squares of differences from the average of the observed values 
can be split into: 

  

The first item is the sum of squares due to varieties, the second item is the 
sum of squares due to blocks, and the third item is the sum of squares due 
to errors. 
 
The sum of squares divided by the degrees of freedom is called the mean 
square. The mean square corresponds to the unbiased variance due to each 
variation. Analysis of variance calculates the ratio of the mean square of the 
variety divided by the mean square of the error, and tests the significance of 
the effect of the varieties using the fact that the ratio follows the F 
distribution with the degrees of freedom  and , under the 
null hypothesis.  
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The following shows the R code to do an analysis of variance without using 
the function aov. 

 
 
  

> simdata <- simdata[order(simdata$block, simdata$variety),] 
> simdata 
（結果を省略） 
> xij <- matrix(simdata$yield, nrow = 4) 
> xij 
         [,1]     [,2]     [,3]     [,4] 
[1,] 62.46728 57.75339 49.33044 50.38343 
[2,] 56.27671 49.08346 48.17777 50.09447 
[3,] 53.00193 51.24463 43.43499 39.78327 
[4,] 48.61040 46.81802 43.45506 40.43740 
> x.. <- mean(xij) 
> xi. <- apply(xij, 1, mean) 
> x.j <- apply(xij, 2, mean) 
>  
> m <- nrow(xij) 
> r <- ncol(xij) 
> ss.blo <- sum((x.j - x..)^2) * m 
> ss.blo 
[1] 257.769 
> ss.var <- sum((xi. - x..)^2) * r 
> ss.var 
[1] 243.0174 
> ss.err <- sum((sweep(sweep(xij, 1, xi.), 2, x.j) + x..)^2) 
> ss.err 
[1] 57.48384 
>  
> ms.blo <- ss.blo / (r - 1) 
> ms.blo 
[1] 85.92301 
> ms.var <- ss.var / (m - 1) 
> ms.var 
[1] 81.00579 
> ms.err <- ss.err / ((m - 1) * (r - 1)) 
> ms.err 
[1] 6.387094 
>  
> f.value <- ms.var / ms.err 
> f.value 
[1] 12.68273 
>  
> qf(1 - c(0.05, 0.01, 0.001), m - 1, (m - 1) * (r - 1)) 
[1]  3.862548  6.991917 13.901803 
>  
> p.value <- 1 - pf(f.value, m - 1, (m - 1) * (r - 1)) 
> p.value 
[1] 0.001391247 
 



 42 

<Complete random block design and completely randomized design> 
The local control, one of Fisher's three principles, is very important for 
performing highly accurate experiments in fields under high heterogeneity 
between plots. Here, assuming the same environmental conditions as before, 
let's consider performing an experiment without setting up a block. 
 
In the previous simulation experiment, we blocked each column and placed 
A, B, C, D randomly in that block. Here we will assign the plots with 4 
varieties x 4 replicates completely randomly across the field. An experiment 
in which blocks are not arranged in the expliment and arranged completely 
randomly is called "completely randomized design."  

 

This time, you should careful that the frequency of appearance of variety 
varies from row to row, since varieties are randomly assigned to the entire 
field.  

 
The genetic effect is assigned according to the order of varieties in a 
completely random arrangement. 

 

 

x1i,x2i,..., xpi

> varmat.crd <- matrix(sample(varmat), nrow = 4) 
> varmat.crd 
     [,1] [,2] [,3] [,4] 
[1,] "D"  "D"  "A"  "B"  
[2,] "B"  "B"  "D"  "C"  
[3,] "D"  "A"  "C"  "A"  
[4,] "C"  "A"  "B"  "C"  
 

> g.value.crd <- matrix(NA, 4, 4) 
> g.value.crd[varmat.crd == "A"] <- 4 
> g.value.crd[varmat.crd == "B"] <- 2 
> g.value.crd[varmat.crd == "C"] <- -2 
> g.value.crd[varmat.crd == "D"] <- -4 
> g.value.crd 
     [,1] [,2] [,3] [,4] 
[1,]   -4   -4    4    2 
[2,]    2    2   -4   -2 
[3,]   -4    4   -2    4 
[4,]   -2    4    2   -2 
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As in the previous simulation experiment, the overall average, the gradient 
of soil fertility, the genetic effect of varieties, and the variation due to the 
local environment are summed up.

 
Now let's perform analysis of variance on the data generated in the 
simulation. Unlike the previous experiment, we do not set blocks. Thus, we 
perform regression analysis with the model that only includes the varietal 
effect and does not include the block effect.

 
In the above example, the varietal effect is not significant. This is 
considered to be due to the fact that the spatial heterogeneity in the field 
causes the error to be large and the genetic difference between varieties 
cannot be estimated with sufficient accuracy. 
The above simulation experiment was repeated 100 times (shown on the 
next page). As a result, in the experiment using the random complete block 
design, the varietal effect was detected (the significance level was set to 5%) 
in 94 experiments out of 100, but it was detected only 66 times in the 
completely random arrangement. In addition, when the significance level 
was set to 1%, the number of the varietal effect detected was 70 and 30, 
respectively (in the case of completely random arrangement, the varietal 
effect was missed 70 times!). From this result, it can be seen that the 
adoption of the random complete block design is effective when there is 

> simyield.crd <- grand.mean + g.value.crd + field.cond + e.value 
> simyield.crd 
         [,1]     [,2]     [,3]     [,4] 
[1,] 51.00193 49.24463 49.33044 46.43740 
[2,] 56.27671 49.08346 43.45506 39.78327 
[3,] 48.61040 57.75339 43.43499 52.09447 
[4,] 56.46728 54.81802 48.17777 44.38343 
 

> res <- lm(yield ~ variety, data = simdata.crd) 
> anova(res) 
Analysis of Variance Table 
 
Response: yield 
          Df Sum Sq Mean Sq F value Pr(>F) 
variety    3 121.38  40.461  1.7072 0.2185 
Residuals 12 284.41  23.701                
> summary(res) 
（結果は省略） 
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among-replication heterogeneity such as the slope of soil fertility. In order to 
make a time-consuming and labor-intensive experiment as efficient as 
possible, it is important to design the experiment properly. 

  

> n.rep <- 100 
> p.rbd <- rep(NA, n.rep) 
> p.crd <- rep(NA, n.rep) 
> for(i in 1:n.rep) { 
  # experiment with randomized block design 
  varmat <- matrix(c(sample(variety), sample(variety),  
    sample(variety), sample(variety)), nrow = 4) 
  g.value <- matrix(NA, 4, 4) 
  g.value[varmat == "A"] <- 4 
  g.value[varmat == "B"] <- 2 
  g.value[varmat == "C"] <- -2 
  g.value[varmat == "D"] <- -4 
  e.value <- matrix(rnorm(16, sd = 2.5), 4, 4) 
  simyield <- grand.mean + field.cond + g.value + e.value 
  simdata <- data.frame(variety = as.vector(varmat),  
    block = as.vector(blomat), 
   yield = as.vector(simyield)) 
  res <- lm(yield ~ block + variety, data = simdata) 
  p.rbd[i] <- anova(res)$Pr[2] 
   
  # experiment with completed randomized design 
  varmat.crd <- matrix(sample(varmat), nrow = 4) 
  g.value.crd <- matrix(NA, 4, 4) 
  g.value.crd[varmat.crd == "A"] <- 4 
  g.value.crd[varmat.crd == "B"] <- 2 
  g.value.crd[varmat.crd == "C"] <- -2 
  g.value.crd[varmat.crd == "D"] <- -4 
  simyield.crd <- grand.mean + g.value.crd + field.cond + e.value 
  simdata.crd <- data.frame(variety = as.vector(varmat.crd),  
     yield = as.vector(simyield.crd)) 
  res <- lm(yield ~ variety, data = simdata.crd) 
  p.crd[i] <- anova(res)$Pr[1] 
 } 
> sum(p.rbd < 0.05) / n.rep 
[1] 0.94 
> sum(p.crd < 0.05) / n.rep 
[1] 0.66 
> sum(p.rbd < 0.01) / n.rep 
[1] 0.7 
> sum(p.crd < 0.01) / n.rep 
[1] 0.3 
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<Report assignment> 
 
Analyze the relationship between a trait and the genetic background for 
several traits using the regression analysis you learned in the lecture. 
 
Submission procedure: 
• Create a report as a pdf file and submit it as an email attachment. 
• Send an e-mail to "report@iu.a.u-tokyo.ac.jp". 
•  At the beginning of the report, do not forget to write your affiliation, 
student number, and name. 
• The deadline of the submission is May 24th. 
 
 
 
 
 
 
 
 
 
 
 

K.W. 

The cat was made of Greek letters! 

Did you notice that? 


