

1

Nothing in evolution makes sense without phylogeny

John Avise (2006)

We can understand, on the genealogical view of classification, systematists have found rudimentary parts as useful as, or even sometimes more useful than, parts of high physiological importance. Rudimentary organs may be compared with the letters in a word, still retained in the spelling, but become useless in the pronunciation, but which serve as a clue in seeking for its derivation.

Charles Darwin (1859)

The same adaptive character may coexist in two groups which have a similar mode of life, without indicating any affinity between them, because it may have been acquired by each independently, to enable it to fill a similar place in nature. In such cases it is found to be an almost isolated character, apparently connecting two groups which otherwise differ radically. Non-adaptive, or purely structural characters, on the other hand, are such as have probably been transmitted from a remote ancestor ; and thus indicate fundamental peculiarities of growth and development.

Alfred Russel Wallace (1878)

Molecular evolutionary rate of hemoglobin: Surface area vs. Heme pocket					
Region	Hemoglobina	Hemoglobinβ			
Surface	1.35 (10 ⁻⁹ /year/site)	2.73 (10 ⁻⁹ /year/site)			
Heme pocket	0.165	0.236			
After Kimura and Ohta (1973)					

Hanuman langur (Colobus; Leaf-eating monkey)

Table 1	Pairwise comparisons of lysozyme sequences						
		Amino-acid differences					
	Species compared	La	Ва	Hu	Ra	Со	Но
and the states	Langur	and the second	14	18	38	32	65
Uniquely	Baboon	0		14	33	39	65
chared	Human	0	1	<u> </u>	37	41	64
residues	Rat	0	1	0		55	64
	Cow	_4	0	0	0		71
	Horse	0	0	0	0	1	15 <u></u> 1

Number of OTU	Possible number of trees		
3	1		
4	3		
5	3x5=15		
6	3x5x7=105		
7	3x5x7x9=945		
8	3x5x7x9x11=10,395		
9	3x5x7x9x11x13=135,135		
10 3	x5x7x9x11x13x15=2,027,025		
22	$3x10^{23}$		
50	3x10 ⁷⁴		
100	$2x10^{182}$		

Joe Felsenstein (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368-376.

A statistical method for phylogenetic inference based on an explicit model for substitutions during evolution

L = P(data|model)model: substitution model + tree topology

Joe Felsenstein in 1998 at ISM

22

Heterogeneity among sites

- Partition among different categories of sites
- Taking account of invariable sites → Later improved with the discrete G-distribution model by Ziheng Yang

Neglect of these factors gives gross underestimation of the number of nucleotide substitutions, and accordingly an older estimation of the date when calibration is taken at a deeper node.

Amino acid substitution model (Empirical matrix)

- Dayhoff (1972) model
- JTT model (Jones, Taylor and Thornton, 1992)
- mtREV model (Adachi and Hasegawa, 1996)
- cpREV model (Adachi, Waddell, Martin, and Hasegawa, 2000)
- WAG model (Whelan and Goldman, 2001)

Code tab	le		Secon	d base	G	
	UUU UUC	Phe		UAU UAC Tyr	UGU UGC	u c
Ű	UUA UUG	Leu	UCA UCG	UAA Stop UAG Stop	UGA UGG Trp	A G
C	CUU CUC	Lou	CCU CCC	CAU CAC	CGU CGC	U C
	CUA CUG		CCA CCG	CAA CAG	CGA CGG	A G Third base
A	AUU AUC	lle	ACU ACC	AAU AAC	AGU AGC	U C
	AUA AUG	Met	ACA ACG	AAA Lys AAG	AGA AGG Stop	A G
G	GUU GUC	Val	GCU GCC	GAU GAC	GGU GGC GIV	U C
	GUA GUG		GCA GCG	GAA GAG	GGA GGG	A G

Akaike Information Criterion (AIC) for model selection (Akaike, 1973)

AIC = - 2xln L + 2x #parameters

The better the fitting of the model to the data, the lower is the 1st term. The more complex is the model, the higher is the 2nd term. A model which minimizes the AIC is considered to be the most appropriate model. This implies that, when there are alternative models whose values of ln L are nearly the same, we should choose the one with the smallest number of parameters.

Hirotsugu Akaike

The transition differences of 3^{rd} codon positions do not differ between uman/chimp and human/mouse comparisons \rightarrow Multiple transition-type substitutions

codon positions, Class 2 sites: other sites. 1: Mouse, 2: Bovine, 3: Gibbon, 4: Orang-utan, 5: Gorilla, 6: Chimpanzee (Hasegawa, Kishino & Yano, 1985)

Evalution 42(2) 1090 pp 672 677							
Lionation, 45(5), 1969, pp. 672-0							
CONFIDENCE LIMITS ON THE MAXIMUM-LIKELIHOOD ESTIMATE OF THE HOMINOID TREE FROM MITOCHONDRIAL-DNA SEQUENCES							
MASAMI HASEGAWA AND HIROHISA KISHINO							
nucleotide sites of class-7	is taken into account Values in	narentheses indicate I I -	I L .: SE and 95% confidence				
interval (CI) of $II = I$	were estimated by 100 boots	tran compliance $N = $ the pu	mber of times the particular				
tree topology had the his	shest log-likelihood value durin	$\frac{1}{1}$ and	under of times the particular				
		is the samplings.					
		Tree					
Class	1	2	3				
1	-662.2 ± 26.7	-664.1 ± 27.1	-665.8 ± 27.3				
		(-1.9 ± 4.6)	(-3.6 ± 4.3)				
2	-745.1 ± 22.3	-746.1 ± 22.7	-744.5 ± 22.8				
		(-1.0 ± 2.4)	(0.6 ± 3.2)				
Total:	$-1,407.3 \pm 35.6$	$-1,410.2 \pm 36.3$	$-1,410.3 \pm 36.4$				
5403.54 (2018) 460 (201		(-2.9 ± 5.2)	(-3.0 ± 5.6)				
95% CI:		-19.9-2.7	-20.4-3.3				
N:	(80)	4	(16)				
Tree-1 is the ML tree, but Tree-3 with 16%BP Tree-1:((Human Chimp) Gorilla)							
cannot be excluded. Tree 2:((Human Corilla) Chimp)							
Later Herri et al. (1995) established Tree 1							
Later Hurar et al. (Later noral et al. (1995) established free-1 Tree-3:((Chimp,Gorilla),Human)						
with the whole m	with the whole mitgenome sequences.						

