Phylogenomics (Phylogenetics based on genomescale data)

Could genome-scale data easily resolve phylogenetic problems?

→ Not necessarily!

Phylogenomics

• The longer the sequences, the smaller the sampling error becomes.

→ Apparently strong conclusion can be obtained.

However, if the estimation is biased, an erroneous tree can be supported with a high confidence. → Bias of tree estimation caused by a model misspecification is an important problem in phylogenetics.

		Parsir	nony(節約	法) Maxi	mum-likeli	hood(<mark>最尤</mark>	:法)	
		Tree-1	Tree-2	Tree-3	Tree-	1 Tree-	2 Tree	-3
	Crystalli	MP	2	3	ML	-0.4	-5.6	
	Lactalbu	5	MP	4	ML	-4.2	-5.5	
	Hbα	4	8	MP	-5.6	-10.5	ML	
	Нbβ	1	5	MP	-0.5	-3.3	ML	
	NGF	1	5	MP	ML	-9.1	-2.2	
	Factor9	1	MP	3	-4.0	ML	-3.8	
	Ribonucl	3	MP	2	-3.5	ML	-3.0	
	Insulin	1	1	MP	-1.6	ML	-1.6	
\rightarrow	LipLipas	9	6	MP	-3.1	ML	-0.2	
	Lipocort	4	5	MP	-8.2	-10.5	ML	
	total	17	20	MP	-4.7	-16.1	ML	
					± 16.0	± 14.0		
	BP	0.0303	0.0108	0.9589	0.3608	0.0515	0.5877	
				Hasegawa	a et al. (19	992) Natu	re 355, 59	5

Systematic errors in phylogenetic inference

- Long-branch-attraction (LBA)
- Heterogeneous tempo & mode of evolution among different genes

Retroposon insertion method developed by Norihiro Okada in 1990s

Retroposons such as SINE and LINE are inserted randomly into a genome. If the same retroposon is found in the same locus in different species, then the insertion must have occurred in the common ancestor of the two species. (Independent insertion in the same locus must be very rare.)

(A) Co	(A) Concatenate analyses of nucleotide sequences								
_1) Equ	al rate among codor	1 positions	s (GTR	$+ \Gamma_8$ 1	model)				
Tree	$<\ln L>(\Delta \ln L)$	$\pm SE$)	KI	I	wSH	BP (%)	#p	AIC	
1	-117.2 ± 3	1.1	0.00	00	0.000	0.0			
2	-147.3 ± 29	9.7	0.00	00	0.000	0.0			
3	<-4,076,316	5.3>				100.0	26	8,152,684.6	
Strong which 1b) U	Strong support for Tree-3 holds even when partition among the 3 codon positions, which takes account of the rate difference among codon positions, are done as follows: 1b) Unequal rate among codon positions (GTR + Гs model)コドン座位間のrateの違い考慮								
Tree	$< \underline{\ln} L > (\Delta \underline{\ln} L)$	\pm SE)	KF	I	wSH	BP (%)	#p	AIC	
1	-113.9 ± 3	3.6	0.00	00	0.000	0.0			
2	-131.3 ± 3	2.8	0.00	00	0.000	0.0			
3	<-3,919,511	.0>				100.0	78	7,839,178.0	
Tree	1^{st}	2 n	d		3rd	<]]	$< \underline{\ln} L > (\Delta \underline{\ln} L \pm SE)$		
1	-22.7 ± 16.6	-28.5±	15.1	-1	62.7 ± 25.1		-113.9 ± 33.6		
2	-33.1 ± 15.6	-44.2±	13.6	_	54.0 ± 25.4		-131.3	± 32.8	
3	<-1,029,462.5>	<-850,4	74.9>	<-2	,039,573.6	>	<-3,919,	511.0>	

Our large concatenated dataset is very sensitive to the assumed mode	el
in rooting the eutherian tree.	

(A) Concatenate analyses of nucleotide sequences

1) Equ	al rate among codon positions	$(GTR + \Gamma_8)$	model)			
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	-117.2 ± 31.1	0.000	0.000	0.0		
2	-147.3 ± 29.7	0.000	0.000	0.0		
3	<-4,076,316.3>			100.0	26	8,152,684.6
2) (1)	1.4.4.1.1.1.4.1					
Cod	on-substitution model (with 1	4)				
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,828,351.7>			88.1	81	7,656,865.4
2	-77.8 ± 64.5	0.112	0.185	11.3		
3	-142.7 ± 65.0	0.014	0.026	0.6		
(C) Ai 1) Con	nino acid sequence analyses catenate analysis (JTT-F + Γ_8	model)				
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	# p	AIC
1	<-1,905,933.9>			51.6	37	3,811,941.8
2	-84.1 ± 37.4	0.014	0.028	0.2		
3	-1.7 ± 41.9	0.478	0.637	48.2		

Our large concatenated dataset is very sensitive to the assumed model in rooting the eutherian tree.

(A) Co	ncatenate analyses of nucleot	ide sequence	s			
1) Equ	al rate among codon positions	$G(GTR + \Gamma_8)$	model)			
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	-117.2 ± 31.1	0.000	0.000	0.0		
2	-147.3 ± 29.7	0.000	0.000	0.0		
3	<-4,076,316.3>			100.0	26	8,152,684.6
	Partition amor	ng 3 codor	positions	s: 100.0	78	7,839,178.0
2) Cod	on-substitution model (with I	·4)				
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,828,351.7>			88.1	81	7,656,865.4
2	-77.8 ± 64.5	0.112	0.185	11.3		
3	-142.7 ± 65.0	0.014	0.026	0.6		
A 1	. I. C		C 3 -1-	T 1 3-(4		4

Akaike Information Criterion: AIC = -2xlnL + 2x(#parameters) The model with minimum AIC can be regarded as the best model

Although Tree-3 was strongly supported by some model, Tree-1 is preferred by the better model in terms of AIC.

1	Nucle	eotide sequence a	nalyses	(GTR +	G)		
	(A) Concatenate analyses of nucleotide sequences						
	1) Equal rate among codon positions (GTR + Γ_8 model)						
	Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
	1	-117.2 ± 31.1	0.000	0.000	0.0		
	2	-147.3 ± 29.7	0.000	0.000	0.0		
	3	<-4,076,316.3>			100.0	26	8,152,684.6
	X 7		· • • • •				
V t c a	Ve nex he hete lifferer mino :	t carried out ML analys erogeneity among different at genes, then the support acid & codon analyses.	is with the ent genes b rt was chai	separate by assignin nged to Tr	model, wł og differer ee-1, cons	iich take it param istently v	s account of eters to with the
V t c a	We nex he hete lifferen mino : (B) Sep	t carried out ML analys erogeneity among different at genes, then the support acid & codon analyses.	is with the ent genes b rt was chan sequences an	separate py assignin nged to Tr	model, wh ag differer ee-1, cons	nich take at param istently v	s account of eters to with the
t c a	We nex he het lifferen mino : (B) Sep <u>1) Equ</u>	t carried out ML analys erogeneity among different at genes, then the support acid & codon analyses. parate analyses of nucleotide s al rate among codon positions	is with the ent genes b rt was chan sequences an $G(GTR + \Gamma_8 T)$	separate by assignin nged to Tr nong 2789 ge nodel)	model, wh ng differer ee-1, cons enes	nich taken at param istently v	s account of eters to with the
t c a	Ve nex he het lifferer mino : (B) Sep 1) Equ Tree	t carried out ML analyst erogeneity among different at genes, then the support acid & codon analyses. parate analyses of nucleotide st al rate among codon positions $< \ln L > (\Delta \ln L \pm SE)$	is with the ent genes b rt was chan sequences an $GTR + \Gamma_{81}$ KH	separate r y assignin nged to Tr nong 2789 ge nodel) wSH	model, wh g differer ee-1, cons enes BP (%)	tich takes at param istently v #p	s account of eters to with the AIC
t c a	We nex he hete lifferen mino a (B) Sep 1) Equ Tree 1	t carried out ML analys erogeneity among different acid & codon analyses. parate analyses of nucleotide state among codon positions $< \ln L > (\Delta \ln L \pm SE)$ <-3,963,489.9>	is with the ent genes b rt was chan sequences an $s (GTR + \Gamma_8 + $	separate f y assignin iged to Tr nong 2789 gr nodel) wSH	model, wh ng differer ee-1, cons enes BP (%) 86.2	tich takes to param istently v #p 72,514	AIC 8,072,007.8
t d a	We nex he hetch lifferen amino a (B) Sen 1) Equ Tree 1 2	t carried out ML analys erogeneity among different acid & codon analyses. parate analyses of nucleotide s al rate among codon positions $< \ln L > (\Delta \ln L \pm SE)$ <-3.963,489.9> -117.4 ± 72.3	is with the ent genes b rt was chan sequences an $(GTR + \Gamma_8 t)$ KH 0.050	separate py assignin nged to Tr nong 2789 ge nodel) wSH	model, wh ng differer ee-1, cons enes BP (%) 86.2 4.1	tich takes to param istently v #p 72,514	AIC 8,072,007.8
t c a	We nex he het lifferen mino a (B) Sep 1) Equ Tree 1 2 3	t carried out ML analys erogeneity among different acid & codon analyses. parate analyses of nucleotide s al rate among codon positions $< \ln L > (\Delta \ln L \pm SE)$ -3.963,489.9> -117.4 ± 72.3 -91.4 ± 72.7	is with the ent genes b rt was chan sequences an $(GTR + \Gamma_8 n$ KH 0.050 0.104	separate py assignin nged to Tr nong 2789 ge nodel) wSH 0.092 0.174	model, wh g differer ee-1, cons enes BP (%) 86.2 4.1 9.7	tich takes to param istently v #p 72,514	AIC 8,072,007.8

Sepa	arate analyses of 2	,789 ge	nes			
(B) Se	parate analyses of nucleot	tide sequer	ices among	; 2789 gen	es	
1) Eq.	ual rate among <u>codon</u> posi ⁻	tions (GTR	, + Γs model	1)		
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,963,489.9>			86.2	72,514	8,072,007.8
2	-117.4 ± 72.3	0.050	0.092	4.1		
3	-91.4 ± 72.7	0.104	0.174	9.7		
2) <u>Co</u> c	don-substitution model (wi	ith Γ4)				
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,621,322.1>			89.6	225,909	7,694,462.2
2	-128.0 ± 103.2	0.107	0.164	10.4		
3	-527.9 ± 96.3	0.000	0.000	0.0		
2) Sep	arate analysis among 2789 ger	nes (JTT-F +	$\Gamma_8 \text{ model})$			
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,799,245.4>			93.4	103,193	3,804,876.8
2	-134.9 ± 88.5	0.064	0.112	6.6		
3	-317.6 ± 85.5	0	0.000	0.0		
Tree-1 among	is robustly supporte genes is taken into	ed irresp account	ective of by the se	the modest	del if the analysis	e difference

_						
(C) A	mino acid sequence analyses					
1) Cor	ncatenate analysis (JTT-F + Γ_8	model)				
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,905,933.9>			51.6	37	3,811,941.8
2	-84.1 ± 37.4	0.014	0.028	0.2		
3	-1.7 ± 41.9	0.478	0.637	48.2		
2) Sep	arate analysis among 2789 gei	nes (JTT-F +	Γ_8 model)			
Tree	$<\ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,799,245.4>			93.4	103,193	3,804,876.8
2	-134.9 ± 88.5	0.064	0.112	6.6		
3	-317.6 ± 85.5	0	0.000	0.0		
Akaike The mo Tree-1 i sequen higher	Information Criterion: Al odel with minimum AIC ca is preferred by both conc ices, but the better mode resolution.	C = -2xInL an be regai atenate an I in terms	+ 2x(#para rded as the od separate of AIC, tha	meters) e best mod e analyses t is the se	del. of amino parate an	acid alysis, gives

Conclusion

- The strong support of Tree-3 by the concatenated analysis of nucleotide sequences is probably an artifact due to neglect of heterogeneity of tempo & mode among different genes.
- This may often be a problem in phylogenetic analyses of genome-scale data.
- Tree-1 is the most likely tree from the 1Mbp data, but the best available model cannot exclude an alternative tree, particularly Tree-2. Therefore, the rooting problem of eutherian mammals still remains unresolved even with the genome-scale analysis.
- Probably, two branchings among the three major groups of eutherian mammals occurred successively in a short time interval.

ince i	22 loci			Tree 2 25	oci		Tree 3 21	loci
Locus	L1 subfamily	TSD, nt	Locus	L1 subfamily	TSD, nt	Locus	L1 subfamily	TSD, nt
HDL1007	L1MB5	22	HDL2003	L1MB4	4	HDL3016 ⁺	L1MB5	19
HDL1040	L1MB5	22	HDL2090	L1MB5	10	HDL3051	L1MB7	7
HDL1061	L1MB5	21	HDL2102	L1MB4	13	HDL3074	L1MB7	-
HDL1081	L1MB2	8	HDL2121	L1MB5	6	HDL3078	L1MB5	15
HDL1119	L1MB8	7	HDL2203	L1MB5	4	HDL3089	L1MB8	13
HDL1122	L1MB5	7	HDL2223	L1MB8	9	HDL3101	L1MB5	13
HDL1125	L1MB7	12	HDL2237	L1MB5	14	HDL3133	L1MB7	-
HDL1136	L1MB2	15	HDL2242	L1MB5	11	HDL3138	L1MB5	5
HDL1141	L1MB7	-	HDL2279	L1MB8	15	HDL3146	L1MB5	10
HDL1144	L1MB8	18	HDL2307	L1MB5	-	HDL3161	L1MB5	6
HDL1171	L1MB5	5	HDL2309	L1MB5	10	HDL3214	L1MB5	-
HDL1200	L1MB5	9	HDL2333	L1MB5	16	HDL3225	L1MB8	14
HDL1208	L1MB5	14	HDL2340	L1MB5	10	HDL3266 ⁺	L1MB5	15
HDL1233	L1MB7	-	HDL2345	L1MB7	-	HDL3283	L1MB5	8
HDL1256	L1MB4	14	HDL2368	L1MB5	15	HDL3295	L1MB5	6
HDL1262	L1MB4	14	HDL2370	L1MB4	8	HDL3314	L1MB5	-
HDL1276	L1MB5	16	HDL2380	L1MB5	9	HDL3324	L1MB4	-
HDL1287	L1MB8	11	HDL2387	L1MB5	13	HDL3347	L1MB4	7
HDL1337	L1MB5	7	HDL2433*	L1MB5	6	HDL3355	L1MB8	6
HDL1360	L1MB5	-	HDL2443	L1MB5	15	HDL3366	L1MB5	7
HDL1372	L1MB5	8	HDL2446	L1MB7	10	HDL3369	L1MB5	10
HDL1373	L1MB5	14	HDL2457	L1MB4	8			
			HDL2483	L1MB8	6			
			HDL2499*	L1MB5	19 A			
			HDI 2548	L1MB8	100			

	tarsier Tarsiiformes	colugo Dermoptera	pangolin Pholidota	sperm whale Physeteridae
ML_CodonPartition	*Sister to Simiiformes (64)	*Sister to Primates (57)	*Sister to Carnivora (79)	*Basal Odontoceti (64)
ML_NoPartition	*Sister to Simiiformes (59)	Sister to Haplorhini (47)	*Sister to Carnivora (66)	*Basal Odontoceti (62)
ML_3	*Sister to Simiiformes (88)	*Sister to Primates (50)	Sister to Cetartiodactyla (37)	*Basal Odontoceti (80)
ML_12	Sister to Dermoptera + Simiiformes (40)	Sister to Simiiformes (48)	*Sister to Carnivora (80)	*Basal Odontoceti (34)
ML_aa	Sister to Dermoptera + Simiiformes (65)	Sister to Simiiformes (94)	*Sister to Carnivora (81)	Sister to <i>Platanista</i> + Ziphiidae + Mysticeti (41)
MP	Sister to Dermoptera + Simiiformes (34)	Sister to Simiiformes (56)	Sister to Tylopoda (48)	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (67)
NJ_MCL	Basal Primates (89)	Sister to Simiiformes (90)	Basal Laurasiatheria (86)	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (100)
NJ_TN	Sister to Sciuromorpha in Rodentia	Sister to Simiiformes (97)	Basal Laurasiatheria next to	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (99)

Relative Rates of Nucleotide Substitution	at the rbc	L Locus of	
Monocotyledonous Plants			
Brandon S. Gaut, ¹ Spencer V. Muse, ² W. Dennis Clark,	³ and Michae	l T. Clegg ¹	
Summary. We subjected 35 rbcL nucleotide se-		J Mol Evol (1992	35:292-303
quences from monocotyledonous taxa to maximum			,
likelihood relative rate tests and estimated relative			
differences in rates of nucleotide substitution be-			
tween groups of sequences without relying on			
knowledge of divergence times between taxa. Rate			
tests revealed that there is a hierarchy of substitu-			
tion rate at the rbcL locus within the monocots.			
Among the taxa analyzed the grasses have the most	Grassos (A	(え利・一年生)/	の笹緑は
rapid substitution rate; they are followed in rate by	· 浩仁スけの	(1,1) $(2,1)$ $(2,1)$	の未続件 F生)の濃
the Orchidales, the Liliales, the Bromeliales, and		11115(ドン・ター 4ル油度が油い	+エ)の週
the Arecales. The overall substitution rate for the	「広丁よりし」	生16)还没か还い ていてつ	•。 [里] 心时
rbcL locus of grasses is over 5 times the substitu-	间が関係し	Cha?	
tion rate in the <i>rbc</i> L of the palms. The substitution			
rate at the third codon positions in the rbcL of the			
grasses is over 8 times the third position rate in the			
palms. The pattern of rate variation is consistent			
with the generation-time-effect hypothesis. Heter-			
ogenous rates of substitution have important impli-			
cations for phylogenetic reconstruction.			

- Since synonymous substitutions do not experience sever constraints, the rate must be higher than that of non-synonymous substitutions which are under functional constraints when the neutral theory holds.
 → ∞ <1
- When positive selection is operating (adaptive evolution), ω >1 could hold.

 $d_{S}(K_{S})$: number of synonymous substitutions per synonymous site $d_{N}(K_{A})$: number of nonsynonymous substitutions per nonsynonymous site $\omega = d_{N}/d_{S}$: nonsynonymous/synonymous rate ratio The ω ratio is widely used in detecting adaptive evolution. Is the rate acceleration of grasses correlated with the ω ratio change?

- $\omega = 1$: neutral evolution (s = 0)
- $\omega < 1$: negative (purifying) selection (s < 0)
- $\omega > 1$: positive (diversifying) selection (s > 0)

 $\omega > 1$ is usually regarded as an evidence of positive selection, but since the analysis averages over the entire genomes, we would not get such a high value even if positive selection is operating in some parts of some proteins. Therefore, we apply the branch-site model to detect these parts.

Branch-site test of positive selection in the common ancestral grass branch

gene	LRT	Positively selected sites (Candidates)
<i>atp</i> E	0.0484	$2T \rightarrow K$, $17S \rightarrow C$, $41A \rightarrow N$, $64M \rightarrow W$, $132V \rightarrow W$
cemA	0.0021	$55N \rightarrow R, 76Y \rightarrow K, 161W \rightarrow F, 190I \rightarrow F, 204I \rightarrow C$
<i>clp</i> P	0.0081	26R→V, 48V→T, 86F→T, 112I→P, 134E→R, 182T→D
<i>rpo</i> B	0.0352	90R→F, 338G→K, 1026G→N
rps11	0.0082	54V \rightarrow P, 62A \rightarrow S, 82A \rightarrow R, 105L \rightarrow S, 115R \rightarrow A, 120L \rightarrow R
	•	

This list should be regarded as merely candidates of positively selected sites, a additional evidence should be given with the structural biological or experiment analyses in order to be identified as positively selected sites.