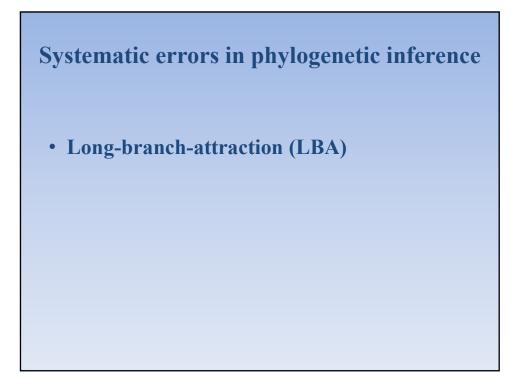
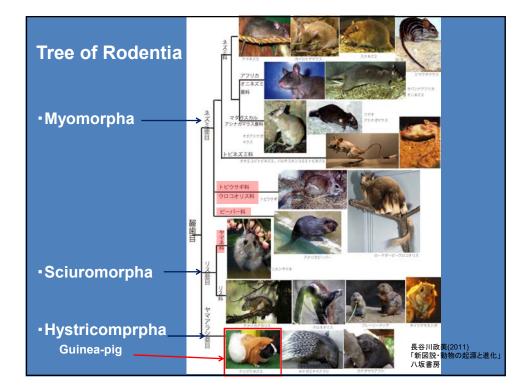
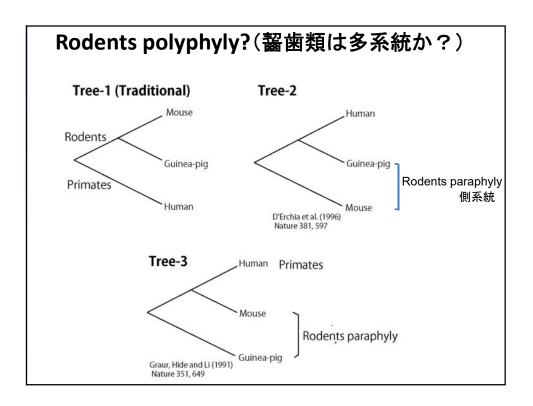
Phylogenomics (Phylogenetics based on genomescale data)

Could genome-scale data easily resolve phylogenetic problems?

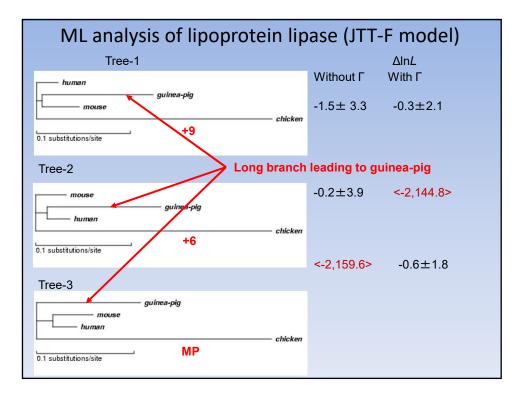

→ Not necessarily!

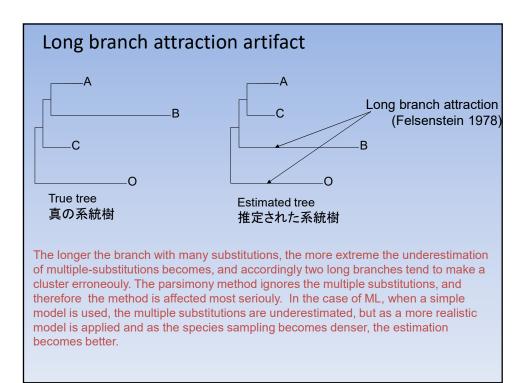

Phylogenomics

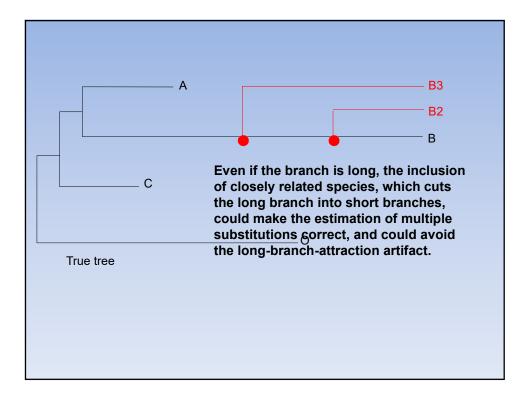

• The longer the sequences, the smaller the sampling error becomes.

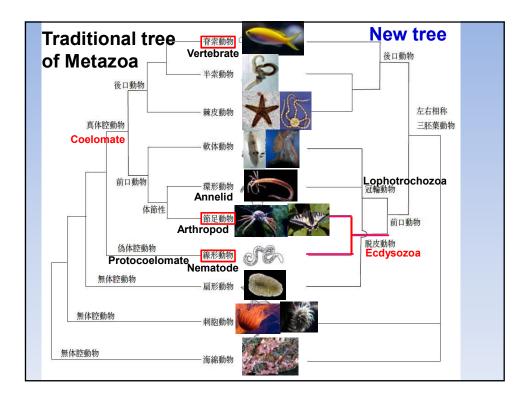
→ Apparently strong conclusion can be obtained.

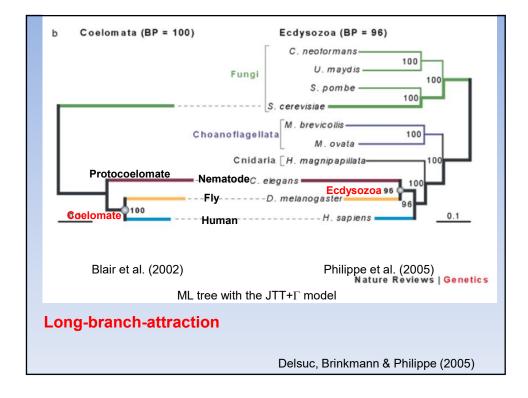
However, if the estimation is biased, an erroneous tree can be supported with a high confidence. → Bias of tree estimation caused by a model misspecification is an important problem in phylogenetics.

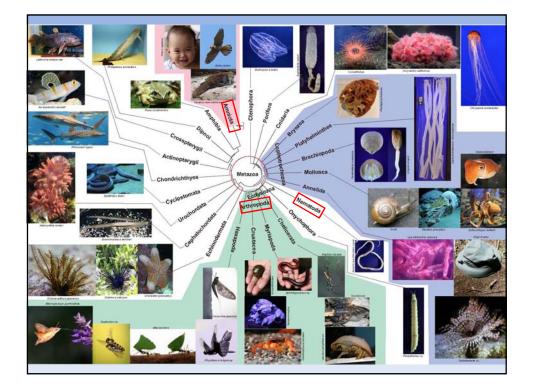


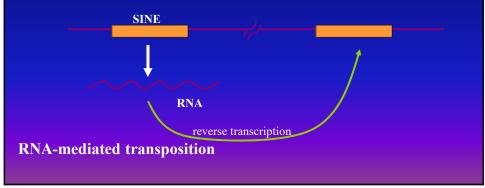


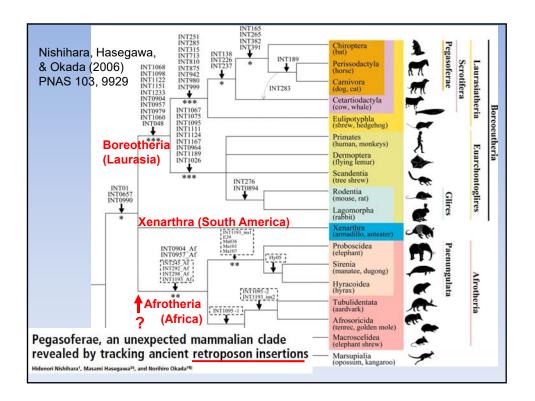


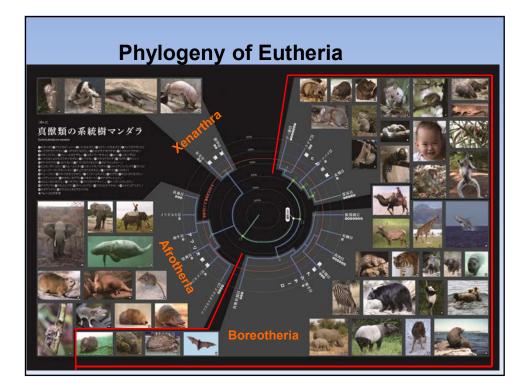

	Tree-1	Tree-2	Tree-3
Crystalli	MP	2	3
Lactalbu	5	MP	4
Hbα	4	8	MP
Нbβ	1	5	MP
NGF	1	5	MP
Factor9	1	MP	3
Ribonucl	3	MP	2
Insulin	1	1	MP
LipLipas	9	6	MP
Lipocort	4	5	MP
Total	17	20	MP
BP	0.0303	0.0108	0.9589

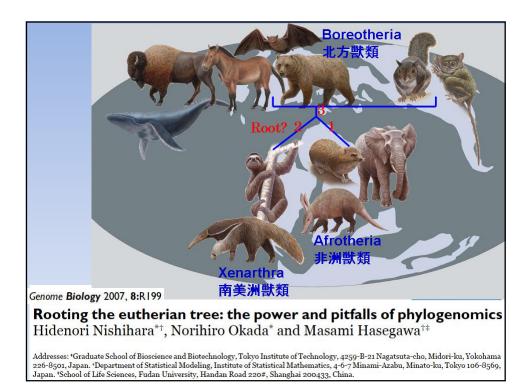

Parsimony(節約法) Maximum-likelihood(最尤法)								
	Tree-1	Tree-2	Tree-3	Tree-	1 Tree-	2 Tree	-3	
Crystalli	MP	2	3	ML	-0.4	-5.6		
Lactalbu	5	MP	4	ML	-4.2	-5.5		
Hbα	4	8	MP	-5.6	-10.5	ML		
Нbβ	1	5	MP	-0.5	-3.3	ML		
NGF	1	5	MP	ML	-9.1	-2.2		
Factor9	1	MP	3	-4.0	ML	-3.8		
Ribonucl	3	MP	2	-3.5	ML	-3.0		
Insulin	1	1	MP	-1.6	ML	-1.6		
 LipLipas	9	6	MP	-3.1	ML	-0.2		
Lipocort	4	5	MP	-8.2	-10.5	ML		
total	17	20	MP	-4.7	-16.1	ML		
				±16.0	±14.0			
BP	0.0303	0.0108	0.9589	0.3608	0.0515	0.5877		
			Hasegawa	a et al. (19	992) Natu	re 355, 59	5	

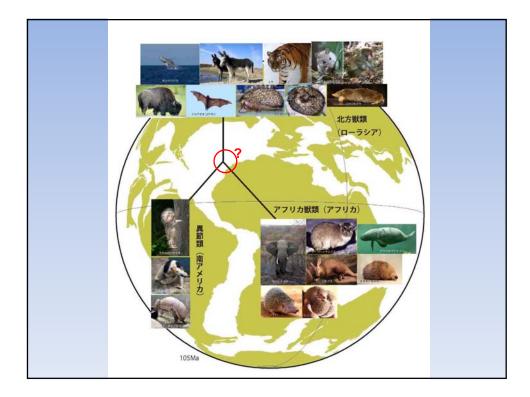


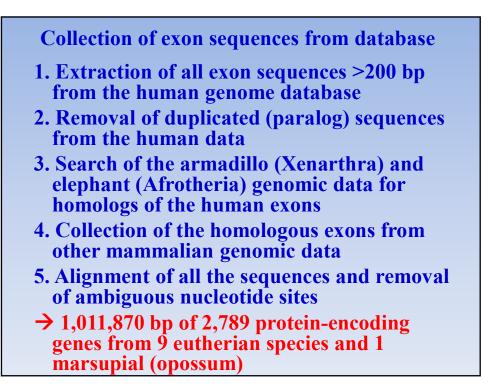


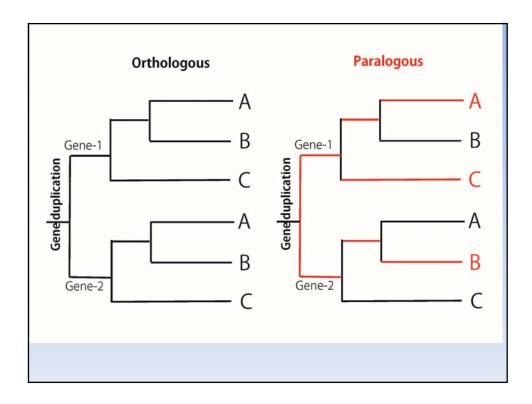

Systematic errors in phylogenetic inference Long-branch-attraction (LBA) Heterogeneous tempo & mode of evolution among different genes

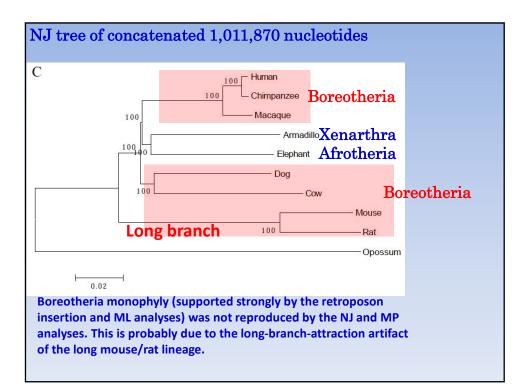


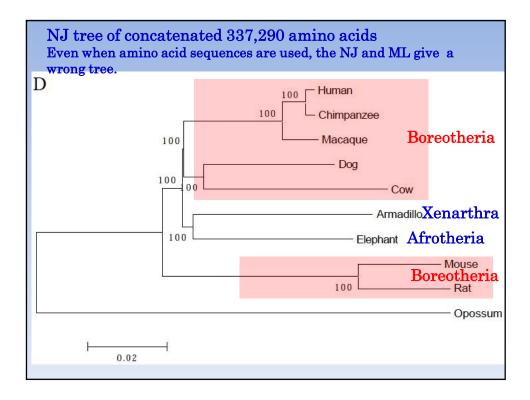

Retroposon insertion method developed by Norihiro Okada in 1990s

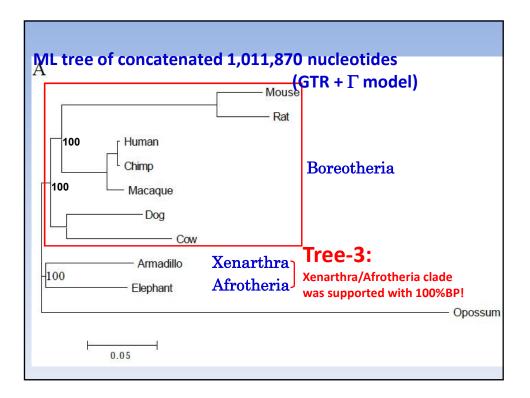

Retroposons such as SINE and LINE are inserted randomly into a genome. If the same retroposon is found in the same locus in different species, then the insertion must have occurred in the common ancestor of the two species. (Independent insertion in the same locus must be very rare.)

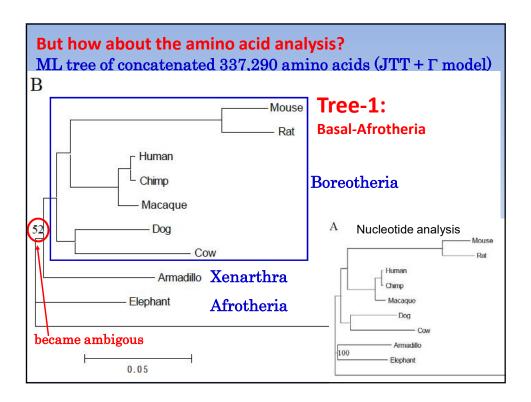


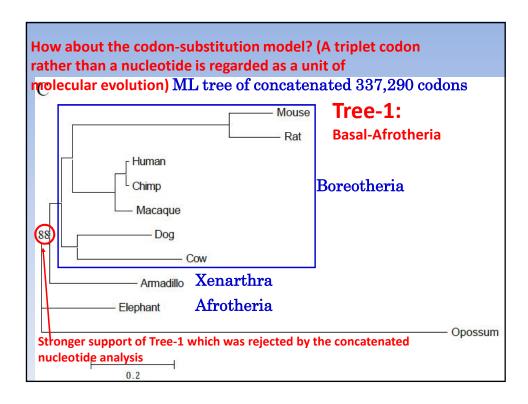












(A) Co	(A) Concatenate analyses of nucleotide sequences								
1) Equ	al rate among codor	n positions	GTR	$+\Gamma_8$	model)				
Tree	$<\ln L>(\Delta \ln L)$	± SE)	KI	ł	wSH	BP (%)	#p	AIC	
1	-117.2 ± 3	1.1	0.00	00	0.000	0.0			
2	-147.3 ± 29	9.7	0.00	00	0.000	0.0			
3	<-4,076,316	.3>				100.0	26	8,152,684.6	
which	support for Tree- takes account of nequal rate amon	the rate of	differer	ice a	among codo	on positior	ns, are do	one as follows:	
			6.000× 940		and a second second		177382		
Tree	$< \ln L > (\Delta \ln L)$	± <i>SE</i>) KH		1	wSH	BP (%)	#p	AIC	
1	-113.9 ± 3	3.6	0.00	00	0.000	0.0			
2	-131.3 ± 3	2.8	0.00	00	0.000	0.0			
3	<-3,919,511	.0>				100.0	78	7,839,178.0	
Tree	1^{st}	2 n	d		3rd	< <u>lr</u>	$\underline{\mathbf{n}} L > (\Delta \underline{1}$	$\underline{\mathbf{n}} L \pm SE$	
1	-22.7 ± 16.6	-28.5±	15.1	-	62.7 ± 25.1		-113.9	± 33.6	
2	-33.1 ± 15.6	-44.2 ±	13.6	-	54.0 ± 25.4		-131.3	± 32.8	
3	<-1,029,462.5>	<-850,4	74.9>	<-2	2,039,573.6>	>	<-3,919	,511.0>	

Our la	rge concatenated dat	taset is v	ery sens	itive to tl	ne assi	umed mode
	ting the eutherian tro		- C			
	ncatenate analyses of nucleoti		s			
1) Equa	al rate among codon positions	$(GTR + \Gamma_{ol})$	model)			
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	-117.2 ± 31.1	0.000	0.000	0.0		
2	-147.3 ± 29.7	0.000	0.000	0.0		
3	<-4,076,316.3>			100.0	26	8,152,684.6
2) Code Tree	on-substitution model (with Γ $< \ln L > (\Delta \ln L \pm SE)$	(4) KH	wSH	BP (%)	#p	AIC
1	<-3.828,351.7>	1011	WOII	88.1	81	7,656,865.4
2	-77.8 ± 64.5	0.112	0.185	11.3		.,
3	-142.7 ± 65.0	0.014	0.026	0.6		
	nino acid sequence analyses catenate analysis (JTT-F + Γ_8	model)				
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,905,933.9>			51.6	37	3,811,941.8
2	-84.1 ± 37.4	0.014	0.028	0.2		
3	-1.7 ± 41.9	0.478	0.637	48.2		

Our large concatenated dataset is very sensitive to the assumed model in rooting the eutherian tree.

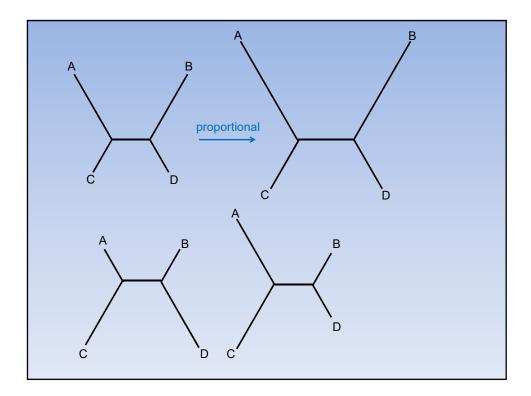
(A) Co	ncatenate analyses of nucleot	ide sequence	s							
1) Equ	al rate among codon positions	$G(GTR + \Gamma_8)$	model)							
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC				
1	-117.2 ± 31.1	0.000	0.000	0.0						
2	-147.3 ± 29.7	0.000	0.000	0.0						
3	<-4,076,316.3>			100.0	26	8,152,684.6				
Partition among 3 codon positions: 100.0 78 7,839,178.0										
	Partition amor	ng 3 codor	n positions	S: 100.0	78	7,839,178.0				
2) Cod	on-substitution model (with I		positions	5: 100.0	78	7,839,178.0				
2) Cod Tree			wSH	BP (%)	78 #p	7,839,178.0				
	on-substitution model (with I	4)								
	$\frac{\text{on-substitution model (with I})}{<\ln L > (\Delta \ln L \pm SE)}$	4)		BP (%)	#p	AIC				
Tree 1	$\frac{\text{on-substitution model (with I}}{<\ln L > (\Delta \ln L \pm SE)}$ <-3,828,351.7>	Г ₄) КН	wSH	BP (%) 88.1	#p	AIC				

Akaike Information Criterion: AIC = -2xlnL + 2x(#parameters) The model with minimum AIC can be regarded as the best model

Although Tree-3 was strongly supported by some model, Tree-1 is preferred by the better model in terms of AIC.

Nucleotide sequence analyses (GTR + G)	Nucleotide sequence	e analyses	(GTR + G)
--	---------------------	------------	-----------

(A) Concatenate analyses of nucleotide sequences


1) Equ	al rate among codon positions	$GTR + \Gamma_8$	model)			
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	-117.2 ± 31.1	0.000	0.000	0.0		
2	-147.3 ± 29.7	0.000	0.000	0.0		
3	<-4,076,316.3>			100.0	26	8,152,684.6

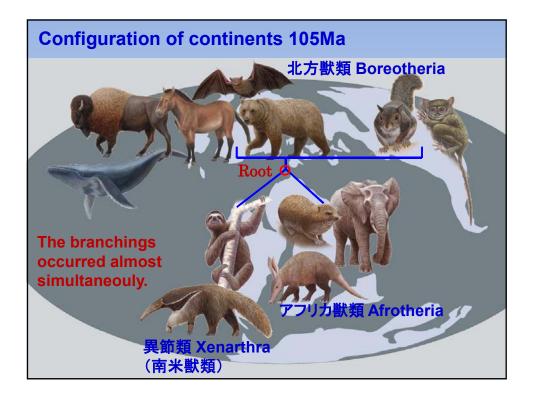
We next carried out ML analysis with the separate model, which takes account of the heterogeneity among different genes by assigning different parameters to different genes, then the support was changed to Tree-1, consistently with the amino acid & codon analyses.

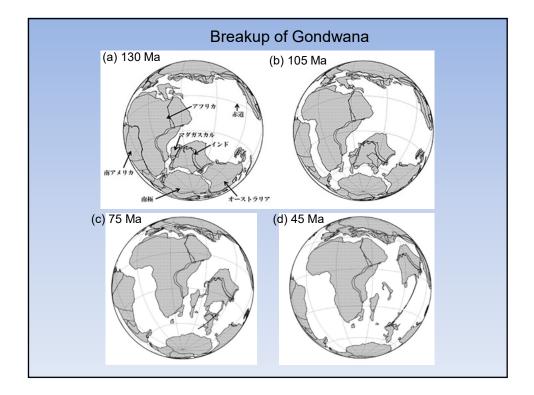
(B) Separate analyses of nucleotide sequences among 2789 genes

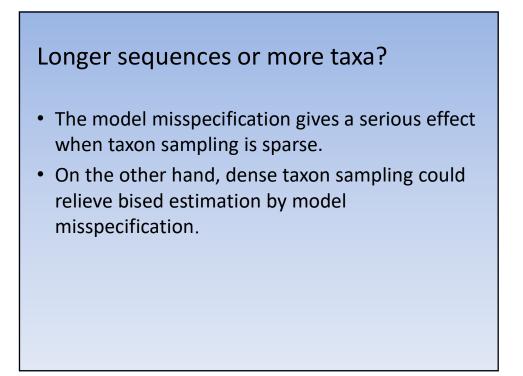
1) Equal	rate among	codon	positions (GTR +	$\Gamma_8 \mod l$
---	---------	------------	-------	-------------	-------	-------------------

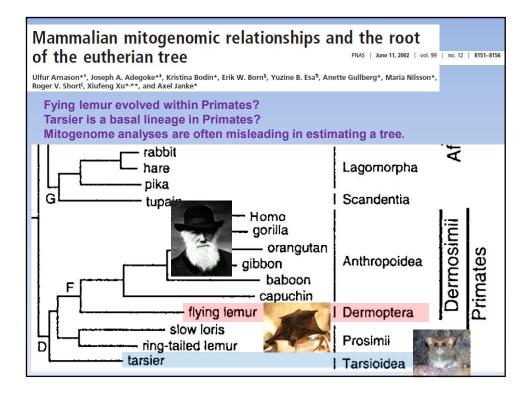
Lqu	ar rate among couon positions	(011. 18)	modely			
Tree	$<\ln L>(\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,963,489.9>			86.2	72,514	8,072,007.8
2	-117.4 ± 72.3	0.050	0.092	4.1		
3	-91.4 ± 72.7	0.104	0.174	9.7		

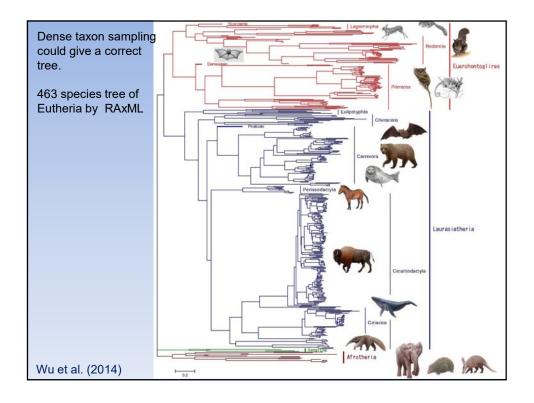
1) Equ	ual rate among codon posi	tions (GTR	+ Le mode	1)		
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-3,963,489.9>			86.2	72,514	8,072,007.8
2	-117.4 ± 72.3	0.050	0.092	4.1		
3	-91.4 ± 72.7	0.104	0.174	9.7		
2 3	$\frac{-128.0 \pm 103.2}{-527.9 \pm 96.3}$	0.107	0.164	10.4		
Tree 1	$ < \underline{\ln} L > (\Delta \underline{\ln} L \pm SE) $ $ < -3.621.322.1 > $	KH	<u>wSH</u>	BP (%) 89.6	#p 225,909	AIC 7,694,462.2
3	-527.9 ± 96.3	0.000	0.000	0.0		
2) Sepa	arate analysis among 2789 ger	nes (JTT-F +	$\Gamma_8 \text{ model})$			
Tree	$<\ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,799,245.4>			93.4		3,804,876.8
2	-134.9 ± 88.5	0.064	0.112	6.6		
3	-317.6 ± 85.5	0	0.000	0.0		

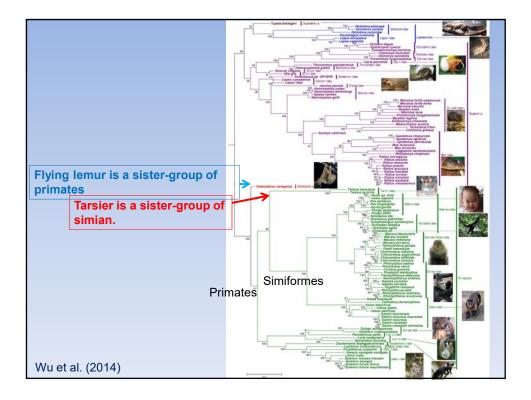

Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH	BP (%)	#p	AIC
1	<-1,905,933.9>			51.6	37	3,811,941.8
2	-84.1 ± 37.4	0.014	0.028	0.2		
3	-1.7 ± 41.9	0.478	0.637	48.2		
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KH	wSH		#p	
Tree	$< \ln L > (\Delta \ln L \pm SE)$	KII		03.4	103 103	3 804 876
Tree 1 2	$< \ln L > (\Delta \ln L \pm SE)$ <-1,799,245.4> -134.9 ± 88.5	0.064	0.112	93.4 6.6	103,193	3,804,876.

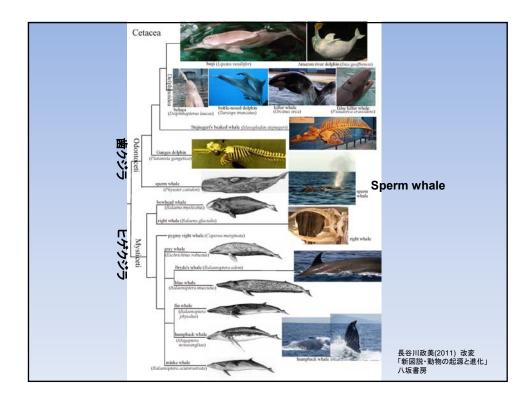

Tree-1 is preferred by both concatenate and separate analyses of amino acid sequences, but the better model in terms of AIC, that is the separate analysis, gives higher resolution.


Conclusion


- The strong support of Tree-3 by the concatenated analysis of nucleotide sequences is probably an artifact due to neglect of heterogeneity of tempo & mode among different genes.
- This may often be a problem in phylogenetic analyses of genome-scale data.
- Tree-1 is the most likely tree from the 1Mbp data, but the best available model cannot exclude an alternative tree, particularly Tree-2. Therefore, the rooting problem of eutherian mammals still remains unresolved even with the genome-scale analysis.
- Probably, two branchings among the three major groups of eutherian mammals occurred successively in a short time interval.


Tree 1	22 loci			Tree 2 25 1	oci	~	Tree 3 21	loci
Locus	L1 subfamily	TSD, nt	Locus	L1 subfamily	TSD, nt	Locus	L1 subfamily	TSD, n
HDL1007	L1MB5	22	HDL2003	L1MB4	4	HDL3016 ⁺	L1MB5	19
HDL1040	L1MB5	2	HDL2090	L1MB5	10	HDL3051	L1MB7	7
HDL1061	L1MB5	-	HDL2102	L1MB4	13	HDL3074	L1MB7	-
HDL1081	L1MB2	8	HDL2121	L1MB5	6	HDL3078	L1MB5	15
HDL1119	L1MB8	7	HDL2203	L1MB5	4	HDL3089	L1MB8	13
HDL1122	L1MB5	7	HDL2223	L1MB8	9	HDL3101	L1MB5	13
HDL1125	L1MB7	12	HDL2237	L1MB5	14	HDL3133	L1MB7	-
HDL1136	L1MB2	15	HDL2242	L1MB5	11	HDL3138	L1MB5	5
HDL1141	L1MB7	-	HDL2279	L1MB8	15	HDL3146	L1MB5	10
HDL1144	L1MB8	18	HDL2307	L1MB5	-	HDL3161	L1MB5	6
HDL1171	L1MB5	5	HDL2309	L1MB5	10	HDL3214	L1MB5	
HDL1200	L1MB5	9	HDL2333	L1MB5	16	HDL3225	L1MB8	14
HDL1208	L1MB5	14	HDL2340	L1MB5	10	HDL3266 ⁺	L1MB5	15
HDL1233	L1MB7	-	HDL2345	L1MB7	-	HDL3283	L1MB5	8
HDL1256	L1MB4	14	HDL2368	L1MB5	15	HDL3295	L1MB5	6
HDL1262	L1MB4	14	HDL2370	L1MB4	8	HDL3314	L1MB5	-
HDL1276	L1MB5	16	HDL2380	L1MB5	9	HDL3324	L1MB4	-
HDL1287	L1MB8	11	HDL2387	L1MB5	13	HDL3347	L1MB4	7
HDL1337	L1MB5	7	HDL2433*	L1MB5	6	HDL3355	L1MB8	6
HDL1360	L1MB5	-	HDL2443	L1MB5	15	HDL3366	L1MB5	7
HDL1372	L1MB5	8	HDL2446	L1MB7	10	HDL3369	L1MB5	10
HDL1373	L1MB5	14	HDL2457	L1MB4	8			
			HDL2483	L1MB8	6			
			HDL2499*	L1MB5	10			
			HDL2548	L1MB8	12			





	tarsier Tarsiiformes	colugo Dermoptera	pangolin Pholidota	sperm whale Physeteridae
ML_CodonPartition	*Sister to Simiiformes (64)	*Sister to Primates (57)	*Sister to Carnivora (79)	*Basal Odontoceti (64)
ML_NoPartition	*Sister to Simiiformes (59)	Sister to Haplorhini (47)	*Sister to Carnivora (66)	*Basal Odontoceti (62)
ML_3	*Sister to Simiiformes (88)	*Sister to Primates (50)	Sister to Cetartiodactyla (37)	*Basal Odontoceti (80)
ML_12	Sister to Dermoptera + Simiiformes (40)	Sister to Simiiformes (48)	*Sister to Carnivora (80)	*Basal Odontoceti (34)
ML_aa	Sister to Dermoptera + Simiiformes (65)	Sister to Simiiformes (94)	*Sister to Carnivora (81)	Sister to <i>Platanista</i> + Ziphiidae + Mysticeti (41)
MP	Sister to Dermoptera + Simiiformes (34)	Sister to Simiiformes (56)	Sister to Tylopoda (48)	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (67)
NJ_MCL	Basal Primates (89)	Sister to Simiiformes (90)	Basal Laurasiatheria (86)	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (100)
NJ_TN	Sister to Sciuromorpha in Rodentia	Sister to Simiiformes (97)	Basal Laurasiatheria next to	Sister to <i>Platanista</i> + Ziphiidae+Mysticeti (99)

