Potential Energy

Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo

Tohru Terada
Schedule

1. June 14 Potential Energy
2. June 21 Molecular Dynamics and Monte Carlo Methods
3. June 28 Applications of Molecular Dynamics Methods
4. July 5 Docking Simulations
Contents

• Practice of molecular orbital (MO) method
 – Exercise 1
• Molecular mechanics
• Energy minimization
• Practice of molecular mechanics
 – Exercise 2
Conformational energy

• When you exert a force on an object, the object is deformed and the “potential energy” of the object increases.

• Similarly, when a molecule changes its structure, its potential energy changes.
Potential energy of a molecule

- Potential energy of a molecule can be calculated by solving the Schrödinger equation approximately with molecular orbital (MO) method.

\[
\hat{H}_{\text{elec}} = - \sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}
\]

\[
\hat{H}_{\text{elec}} \Phi = E_{\text{elec}} \Phi
\]

\[
E = E_{\text{elec}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}}
\]

- N: Number of electrons
- M: Number of atoms
- Z_A: Atomic number of atom A
- Φ: Wave function
Practice of MO calculation (1)

• In this lecture, we use quantum chemical calculation software, Gaussian 09W.
• Double-click the icon to start the graphic user interface (GUI) of this software, GaussView 5.0.
Practice of MO calculation (2)

1. Click Ring Fragment button in the Control Panel, select benzene, and click within Molecule View Window.

2. Choose “Calculate” → “Gaussian Calculation Setup…” from the menu of the Control Panel.

3. Select “Energy” as Job type, select “6-31G(d)” as Basis set in the Method tab, and click “Submit.”

4. Save the input file as ”benzene.gjf” on Desktop.

5. Click “OK” when Run Gaussian Window appears.
Practice of MO method (3)

6. When the calculation has finished, click “はい” to close Gaussian window.

7. Select “benzene.log” in the Gaussian Job Completed window and click “OK.”

8. Choose “Results” → “Summary” from the menu of the Control Panel.
 E(RHF)\(^*\) indicates the potential energy of the molecule.

\[*1 \text{ a.u.} = 627.509\, 391 \text{ kcal/mol} \]
Technical terms

• Method:
 – Hartree-Fock: the most basic *ab initio* method
 – Semi-empirical: applicable to a large system, but less accurate
 – DFT: more accurate and computationally less expensive. Electron correlation effect is partly considered.

• Basis Set:
 – STO-3G, 3-21G, 6-31G, 6-311G, etc, in order of complexity. The more complex basis set can approximate the molecular orbital the more accurately.
 – Diffuse (+, ++) and/or polarization [(d), (d,p), etc] functions are added as required.
Change the structure

- After clicking Modify Bond button in the Control Panel, click two neighboring carbon atoms of the benzene molecule.
- Change the bond length.

- Calculate the potential energy. (Save the input file as benzene2.gjf on the Desktop.)
Structural energy

- Examine how the energy changes as
 - Bond lengths
 - Angles
 - Dihedral angles
 - Interatomic distances between atoms that are not covalently bonded change in simple model molecules.
Diatomic molecule (1)

1. Download H2.gjf from this lecture’s web page.
2. Choose “Gaussian 09W” → “Gaussian 09W” from Start menu to start Gaussian 09W.
3. Choose “File” → “Open” from the menu to open H2.gjf.
4. Choose “File” → “Exit & Run” from the menu to start the calculation.
5. Save the output file as H2.out on the Desktop.
6. When the calculation has finished, choose “File” → “Exit” from the menu.

7. Start GaussView 5.0. Choose “File” → “Open” from the menu of the Control Panel to open H2.out. (Select ”Gaussian Output Files (*.out *.log)” as ファイルの種類.)

8. Choose “Results” → “Scan” from the menu of the Control Panel.

9. Right-click within the Scan plot window, choose “Save Data” from the menu, and save the data as H2_scan.txt on the Desktop.
Diatomıc molecule (3)

Potential energy of H$_2$ as a function of the bond length

$$y = 2.6393x^4 - 9.5699x^3 + 13.26x^2 - 8.1636x + 0.7395$$

- Open H2_scan.txt with Excel and plot the potential energy against the bond length.
- The energy is well approximated with a fourth-order polynomial.
- Potential energy can be calculated at low computational cost with this polynomial function.
The bond length thermally fluctuates about the energy minimum bond length.

In biomolecular simulations, the temperature is about 300 K. \(kT = 0.6 \text{ kcal mol}^{-1} = 10^{-3} \text{ a.u.} \)

The width of the fluctuation is about 0.04 Å.

Potential energy of \(\text{H}_2 \) as a function of the bond length

\[
E(r_0 + \Delta r) = E(r_0) + \left. \frac{\partial E(r)}{\partial r} \right|_{r_0} \Delta r + \frac{1}{2} \left. \frac{\partial^2 E(r)}{\partial r^2} \right|_{r_0} \Delta r^2 + O(\Delta r^3)
\]

\[
E(r_0 + \Delta r) - E(r_0) \approx k(r - r_0)^2
\]

Approximated with quadratic function\(^{15}\)
Taylor series

Taylor series of $f(x)$ in the neighborhood of p.
$\Delta x = x - p$.

$$f(p + \Delta x) = f(p) + \frac{df(x)}{dx} \bigg|_{x=p} \Delta x + \frac{1}{2!} \frac{d^2 f(x)}{dx^2} \bigg|_{x=p} \Delta x^2 +$$

$$+ \cdots + \frac{1}{k!} \frac{d^k f(x)}{dx^k} \bigg|_{x=p} \Delta x^k + \cdots$$

$$= f(p) + \frac{df(x)}{dx} \bigg|_{x=p} \Delta x + \frac{1}{2!} \frac{d^2 f(x)}{dx^2} \bigg|_{x=p} \Delta x^2 + O(\Delta x^3)$$

Truncated at the second order

Error (order of Δx^3)
Comparison of dynamics

$$E(r) = k (r - r_0)^2$$

$$F(r) = -\frac{\partial E(r)}{\partial r} = -2k(r - r_0)$$

$$\mu \ddot{r} = -2k(r - r_0)$$

$$\omega = \sqrt{\frac{2k}{\mu}}, \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$r(t) = A \cos(\omega t + \delta) + r_0$$

The trajectory of classical dynamics based on the potential energy function is almost the same as that of \textit{ab inito} MD.
Energy of three-atom molecule

The energy function is approximated as the sum of r-dependent and θ-dependent terms.

$$E(r, \theta) \approx k_b (r - r_0)^2 + k_a (\theta - \theta_0)^2$$
Intermolecular interaction (1)

1. Start GaussView 5.0. Click the icon of Element Fragment in the Control Panel, and select “O” to show “Oxygen Tetravalent” in Current Fragment window.

2. Click on two different points within Molecule View window.

3. Select “C” from the Element Fragments to show “Carbon Tetrahedral” in the Current Fragment window. Click on one of hydrogen atoms of H₂O to replace it with CH₃.

4. Similarly, replace one hydrogen atom of another H₂O with CH₃
Intermolecular interaction (2)

5. Choose “Calculate” → “Gaussian Calculation Setup…” from the menu of Control Panel. Select “Energy” as Job type, select “6-31G(d)” as Basis set, and click “Submit.” Save the input file as “methanol2.gjf” on the Desktop.

6. Similarly, calculate energy for a single molecule. Save the input file as “methanol1.gjf” on the Desktop.

7. Calculate interaction energy as:

\[\Delta E = E_{AB} - (E_A + E_B) \]

\[\Delta E = -230.0688122 - [2 \times (-115.0334869)] \]

\[= -0.0018384 \text{ a.u.} = -1.15 \text{ kcal mol}^{-1} \]
Interaction energy of ions

The interaction energy ΔE is given by the E_{elec} term with $q_i=q_j=1$.

$$E_{\text{elec}} = \frac{(q_i e)(q_j e)N_A}{4\pi\varepsilon_0 r_{ij} (10^{-10}\text{ m})} = \left(332.06\text{ kcal mol}^{-1}\right)\frac{q_i q_j}{r_{ij}}$$
Electrostatic potential (1)

- Electrostatic energy of a particle is calculated as the product of electrostatic potential (ESP) at the position and the charge of the particle.
- ESP is calculated from the charge distribution.

\[\varphi(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \]

- The right figure shows the ESP of a HF molecule.

\[x = 1.83 \text{ Å} \]
Electrostatic potential (2)

• ESP generated by a molecule is approximated by that generated by point charges placed at the centers of its atoms.

\[\phi(\mathbf{r}) \approx \sum_i \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|} \]

• The point charges are determined to minimize the error between the original and the approximated ESPs.
 – Charge of H: 0.26
 – Charge of F: −0.26
Van der Waals interactions

Attraction between nonpolar molecules can only be calculated with the method that considers the electronic correlation effect.
Origin of the attraction

Fluctuation of the electron cloud produce an instantaneous electric dipole moment even on a nonpolar molecule, which induces an electric dipole on nearby molecules.

The interaction between the dipole and the induced dipole is always attractive.

\[\langle \mu \rangle = 0 \quad \langle E(r) \rangle = 0 \]
Van der Waals energy function

\[E_{vdW}(r) = 4\varepsilon \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \]

- **Repulsion**
- **Attraction**

At \(r = \sigma \), \(E_{vdW} = 0 \)
At \(r = 2^{1/6}\sigma \), \(E_{vdW} = -\varepsilon \) (Minimum)

\(\sigma = 3.34 \text{ Å} \)
\(\varepsilon = 0.36 \text{ kcal mol}^{-1} \)
Components of interaction

Electrostatic interaction

van der Waals interaction

Attraction

Repulsion

$-\delta q$ $+\delta q$ $-\delta q$
Dihedral angle energy

Model: butane

Energy of butane as a function of dihedral angle

Gaussian job file: butane.gjf
Dihedral angle energy function

- Energy function of butane is expressed as the sum of a periodic function and van der Waals energy function.

\[
E(\phi) = \sum_{i} k_i \left[1 + \cos(n_i \phi - \delta_i^0) \right] + 4\varepsilon \left[\left(\frac{\sigma}{r_{14}} \right)^{12} - \left(\frac{\sigma}{r_{14}} \right)^6 \right]
\]

Only the van der Waals interaction between the first and fourth methyl groups are considered.
Exercise 1

• Determine n, δ, ε, and σ of the potential energy function of butane.
 – Download “butane_scan.xlsx” from this lecture’s web page.
 – Choose “Plot”→“Plot Molecular Property” from the menu of Scan Plot window and select “Bond” from the pull-down menu and set atom indices to “1” and “4” to obtain the list of the distances between the first and fourth carbon atoms.
Molecular mechanics

- QM calculation demands large computational cost.
- The computational cost can be reduced by using potential energy function that reproduces QM energy values.

\[
E(r) = \sum_b k_b (r_b - r_b^0)^2 + \sum_a k_a (\theta_a - \theta_a^0)^2 + \sum_d k_d \left[1 + \cos(n_d \phi_d - \delta_d^0) \right] + \sum_{ij} 4\varepsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right\} + \frac{q_i q_j}{r_{ij}} \]

- Bond
- Angle
- Dihedral
- Non-bonded
Force field parameters

• Force field parameters
 – Parameters used in the potential energy function. (equilibrium bond length, force constant, partial charge, etc.)

• Ab initio force field parameters
 – Derived from QM results.

• Empirical force field parameters
 – Determined so as to reproduce the structure and thermodynamic quantities.
Problems and solutions (1)

• A biomacromolecule is composed of a large number of atoms.
 – It is difficult to apply the QM calculation to the whole molecule.

• Atoms are classified into atom types according to their chemical properties (type of hybridization or substituents). The same parameters are assigned to the atoms of the same atom type.

• Parameters are determined for model compound.
Atom types and model compounds

Model compounds

Problems and solutions (2)

- In condensed (liquid) phase, molecules are close to each other. The interaction between two molecules is affected by the other molecules near the molecules.
 - The parameters determined in gas phase are not applicable.

[Diagrams of gas and condensed phases]
Effective potential energy

\[E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = E(\mathbf{r}_1, \mathbf{r}_2) + E(\mathbf{r}_1, \mathbf{r}_3) + E(\mathbf{r}_2, \mathbf{r}_3) + \Delta E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \]

\[= E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2) + E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_3) + E^{\text{eff}}(\mathbf{r}_2, \mathbf{r}_3) \]

\[E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) : \text{energy of three-molecule system} \]
\[E(\mathbf{r}_1, \mathbf{r}_2) : \text{energy of two-molecule system} \]
\[E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2) : \text{effective pairwise potential} \]

Effect of the many-body interaction is incorporated in the effective pairwise potential.

Parameters are determined to reproduce experiments.
Water models (1)

<table>
<thead>
<tr>
<th></th>
<th>SPC</th>
<th>TIP3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(\text{OH})$</td>
<td>1.0</td>
<td>0.9572</td>
</tr>
<tr>
<td>$\angle \text{HOH}$</td>
<td>109.47</td>
<td>104.52</td>
</tr>
<tr>
<td>r^*</td>
<td>1.7766</td>
<td>1.7683</td>
</tr>
<tr>
<td>ε</td>
<td>0.1554</td>
<td>0.1520</td>
</tr>
<tr>
<td>q_H</td>
<td>0.41</td>
<td>0.417</td>
</tr>
</tbody>
</table>

$r(\text{OH})$ [Å], $\angle \text{HOH}$ [degree]
r^* [Å12 kcal mol$^{-1}$], $2r^* = 6\sqrt{2}\sigma$
ε [Å6 kcal mol$^{-1}$]
$q_O = -2q_H$

Van der Waals interaction is calculated only between oxygen atoms.

Water models (2)

<table>
<thead>
<tr>
<th></th>
<th>SPC</th>
<th>TIP3P</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0.971</td>
<td>0.982</td>
<td>0.997</td>
</tr>
<tr>
<td>ΔH_{vap}</td>
<td>10.77</td>
<td>10.45</td>
<td>10.51</td>
</tr>
<tr>
<td>C_p</td>
<td>23.4</td>
<td>16.8</td>
<td>17.99</td>
</tr>
<tr>
<td>α</td>
<td>58</td>
<td>41</td>
<td>25.7</td>
</tr>
<tr>
<td>κ</td>
<td>27</td>
<td>18</td>
<td>45.8</td>
</tr>
</tbody>
</table>

d: density [g cm$^{-3}$], ΔH_{vap}: heat of vaporization [kcal mol$^{-1}$]

C_p: molar isobaric specific heat [cal mol$^{-1}$ K]

α: coefficient of thermal expansion [10^{-5} K$^{-1}$]

κ: compressibility [10^{-6} atm$^{-1}$]

All values are calculated or measured at 25 °C, 1 atm.

Force field parameter sets

- Force field parameter sets are distributed along with molecular simulation software.
 - AMBER
 - http://www.ambermd.org/
 - CHARMM
 - http://www.charmm.org/
 - GROMOS, GROMACS
 - http://www.igc.ethz.ch/gromos/
 - http://www.gromacs.org/
Energy minimization (1)

• Changes the conformation to the one having lower potential energy.
• Also called “structure optimization.”
• Must be done in advance of the molecular dynamics simulation to avoid atomic overlaps.
Energy minimization (2)

• First-order algorithm
 – Steepest descent method
 Simple, but many steps are required until convergence.
 – Conjugate gradient method
 When the energy function is a quadratic form of n variables, the minimum is reached in n steps.

• Second-order algorithm
 – Newton-Raphson method
 Quick to converge, but calculation of Hessian ($\nabla^2 E$) requires a large computational cost.
Modeling a small molecule (1)

1. Start UCSF Chimera.
3. Choose “Start Structure” and Add “fragment” and select “benzene” as the fragment.
4. Enter “DXN” (dibenzo-\(\rho\)-dioxin) in the box of Residue name and click “Apply.”
5. Select a hydrogen atom by clicking it while pressing the Ctrl key.

6. Change into the “Modify structure” mode, set as shown in the right, and “Apply.” → The selected atom is changed to oxygen.
Modeling a small molecule (3)

7. Select the hydrogen atoms bonded to the oxygen atom.

8. Set as shown in the right and “Apply.” →Changed to carbon.

9. Using this function, generate the model of dibenzo-\(\rho\)-dioxin.
Energy minimization

2. Select “AMBER ff99SB” and “AM1-BCC” for Standard residues and Other residues, respectively, and click “OK.”

3. Select “+0” for Net Charge and “OK.”

5. Find the energy value becomes smaller in “Favorites”→“Reply Log.”
SMILES

• SMILES is a representation of the molecular structure.
• Select “Add SMILES string” in the Build Structure window in the “Start structure” mode.
• Examples of SMILES string.
 – benzene: c1ccccc1
 (Lower cases are used for aromatic atoms)
 – dibenzo-\(p\)-dioxin: c13cccccc1Oc2cccccc2O3
 – alanine: \([N+][C@@H](C)C(=O)[O-]\)

Exercise 2

• Generate this molecule and do energy minimization.
 – Use SMILES “C1CCCCCC=C1” to generate the ring

Oseltamivir: an antiviral drug
(trade name: Tamiflu)
Formula: $C_{16}H_{28}N_{2}O_{4}$

• Save the image of the energy-minimized structure in the PNG format.
Instructions for submission

• Attach the Excel file of Exercise 1 and the image file of Exercise 2 to an email.
• Put the energy values before and after the energy minimization in the body of the email.
• Put “Molecular Modeling” in the Subject field.
• Be sure to put your name, ID card number (if you are a student), and registration ID (e.g. 18001) in the body of the email.
• Send the email to Prof. Tohru Terada (tterada@iu.a.u-tokyo.ac.jp).