ゲノムデータベースとプログラミング

法政大学 生命科学部 大島研郎

本日の講義資料

本日の講義では, Pythonを使います. ◆コマンドプロンプトを立ち上げてください 【 スタート → Windowsシステムツール → コマンドプロンプト

> python -help

と入力して, エラーが出ないことを確認してください

ゲノムとは

gene(遺伝子)+ -ome(総体)

ゲノム = ある生物のもつ全ての遺伝情報

ゲノム解読の歴史

表 1-1 配列が完全に決定されたゲノムの例 1 2						
生物種	特徵	生息場所	ゲノムサイズ (一倍体ゲノム あたりの塩基対 数, ×1000)	タンパク質指令遺 伝子の数(推定)		
細菌						
マイコプラズマの一種 Mycoplasma genitalium	既知の細胞ゲノムのうちで最小のゲノ ムをもつ	ヒトの生殖道	580	468		
Synechocystis sp.	光合成を行い,酸素を作り出す (シアノバクテリアの一種)	湖や小川	3573	3168		
大腸菌 Escherichia coli	実験室でよく使われる	ヒトの腸	4639	4289		
ヘリコバクター・ピロリ Helicobacter pylori	胃潰瘍を起こし、胃がんの原因となる	ヒトの胃	1667	1590		
真核生物						
出芽酵母 Saccharomyces cerevisiae	最小のモデル真核生物	ブドウ果皮, ビー ル	12,069	約 6300		
シロイヌナズナ Arabidopsis thaliana	顕花植物のモデル生物	土壌と大気	約 142,000	約 26,000		
線虫 Caenorhabditis elegans	発生を完全に記載できる単純な動物	土壤	約 97,000	約 20,000		
キイロショウジョウバエ Drosophila melanogaster	動物発生の遺伝学に貢献	腐りかけの果物	約 137,000	約 14,000		
\vdash \vdash Homo sapiens	最も精力的に研究されている哺乳類	家	約 3,200,000	約 24,000		

ゲノムサイズや遺伝子数は、特に細菌と古細菌の場合、同じ種でも系統によって異なる。表のデータは配列決定された特定の系統のもの。遺伝子には何通り ものタンパク質を生じるものが多いので、ゲノムによって規定されるタンパク質の総数は遺伝子数よりかなり多い。

DNA は二本鎖なので、塩基対(base pair; bp)の数で分子の長 さを表す。キロ塩基対(kilobase pair; kb)は 10³ bp、メガ塩基 対(megabase pair; Mb)は 10⁶ bp、ギガ塩基対(gigabase pair; Gb)は 10⁹ bp。まとめると、

1 kb = 1000 bp

2 1 Mb = 1000 kb = 1,000,000 bp

1 Gb = 1000 Mb = 1,000,000 kb = 1,000,000,000 bp RNA 分子はたいてい一本鎖なので長さの単位に bp は使えず, ヌ クレオチドの数で表す。

- 1995年,生物として初めてHaemophilus influenzaeの全ゲノムが解読された
- その後、多くの生物の全ゲノムが解読され、現在では1万種以上の生物の ゲノム情報がデータベースに登録されている

▶ ヒトゲノムマップ を開く

http://www.lif.kyoto-u.ac.jp/genomemap/html/pdf.html

Number, 099 1076m 1076m Казат 1076m 1076m Казат 1076m 1076m Казат 1076m	広子名 連称名 BO ABO血液型遺伝子 *血球に目中をつける酵素。 日中には本型、B型の2種類があり、この組み合わせで血液型が決まる。 日中じつかない場合はの型になる。 *Pの遺伝子(オーソログ)を持つ生物 *・ ** *・ ** *・ ** *・ ** *・ ** *・ ** *・ ** *・ ** *・ ** *・ ** ** ** <th>Num 1 1///1260 126</th> <th>- ヘルパー下開き タンパクド、CDA インパープトでした マンパーズ ・見かけ取取用 ・スルンド取取用 ・フラーグン耳至。1 ・ためは取取り ・マンパーズ ドロース アム ドレース ・アム ドレース ・アム ・アム ・ア</th> <th> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</th>	Num 1 1///1260 126	- ヘルパー下開き タンパクド、CDA インパープトでした マンパーズ ・見かけ取取用 ・スルンド取取用 ・フラーグン耳至。1 ・ためは取取り ・マンパーズ ドロース アム ドレース ・アム ドレース ・アム ・アム ・ア	 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Noncessor Prove desception Prove desception Prove descent Prove descent Prov	Atio Table (1990) (1990)	Numb 116300751 1141	• Развидует - Суску услуги • Уули - Суску услуги • Руже услуги • Уули - Суску услуги • Руже услу	適応名 適応名 のPN1LW/ 赤色識別遺伝子 のPN1LWI 緑色識別遺伝子 のOPNt LWit 赤色を識別する際に、OPNt Mwit 緑色を適別する際に機能するタンパク質。 のそのいずれかのタンパク質が変異すると、赤と緑が判別ににくい色覚を持つことになる。
Number: 510055bp 255m	 連伝子名 通称名 SRY 性決定遺伝子 の男性化に関わるタンパク質。 の男性化に関わるタンパク質。 のとトの体は元々女性型になって のタンパク質が作用すると精巣が 	いるが、こ できる。	遺伝子砂漠	 ◎非違伝子領域が延々と続く不毛な地帯。 ◎このような領域はグノム上の様々な場所に存在している。 TTCCAの反復配列

ゲノムブラウザを使ってヒトゲノムを見てみよう

NCBIトップページ右のリンクから「Genome」→「Genome Data Viewer」

Search		This resource organizes information or assemblies, and annotations.	genomes including sequences, maps, chromosomes,
Popular Resources PubMed Bookshelf PubMed Central PubMed Health	Using Genome Help Browse by Organism UPDATED Download / FTP Download FAQ	Custom resources Human Genome Microbes Organelles Viruses	Other Resources Assembly BioProject BioSample Genome Data Viewer
BLAST Nucleotide Genome SNP	Submit a genome	PTOKATYOUL TELETERICE GETOTIES	
ノム解読された真核生 統図が表示される human」 ↓ Browse genome」	Homo sapiens (numan)	t Acedes albopictus maize rice Acabidopsis Acabidopsis	Search in genome Search in genome Location, gene or phenotype Examples: TP53, chr17:7667000-7669000, rs334, DNA repair Assembly GRCh38,p12 rat Browse genome BLAST genome BLAST genome Assembly details Name GRCh38,p12 GRC

黒い領域は塩基配列

407 المطارر فعل 1180 M

200 M

248,956,422

Tracks shown: 8/669

し

が決まっていない Sign in to NCBI Chr 1 (NC 000001): 1 - 248,956,422 q21 q22 q23 q24 q25 q31 q42.1 q43 🔀 Tools 🔹 🤹 Tracks 🔹 160 M 180 M 200 N CRP 7 IL10 PARP1 PT6S2 TRAT 1111 . 남년 반 10.00 ENS6000015206 FNS6888884278 11) I 1111111 0.00 •••• RNA-seq exon coverage, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 RNA-seg intron-spanning reads, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 Feedback

2

セントロメアには遺伝子がコードされていな

H40 H

HER N

遺伝子探索

ゲノム配列から生命活動に関わる機能や分子進化に関する考察などを行うためには, タンパク質をコードしている遺伝子領域を同定することが重要となる.

代謝パスウェイデータベース

KEGG

https://www.genome.jp/kegg/kegg_ja.html

生命システム情報統合データベース。完全にゲノムが決まった生物種(一部、ドラフト配列も含む)の代謝系や一部の制御系(シグナル伝達や細胞周期など)をまとめ、 そこから様々な物質データベースや酵素データベースを参照することができる。

代謝系データベースの参照

ヒトの持つ酵素が緑色で表示される

次世代シーケンサー

Roche Diagnostics社 <u>Genome Sequencer FLX System</u>(454) 2005年発売

Applied Biosystems社 SOLiD 3 2007年発売

Solexa / illumina社 Genome Analyzer IIx 2005発売

PacBio RS II

次世代シーケンサーの比較

		Ion PGMシステム		HiSeq 2000/2500	
	Ion Protonシステム	Ion 318 chip	MiSeq	(SBS v3試薬使用)	PacBio <i>RS</i> II
1リード長	~200) base	150/250/300 base	100 base	約10,000 base
	約5,000万リード	約400万リード	約3,000万リード	1 約3億リード	約5万リード
リード数	(1ランあたり)	(1ランあたり)	(1ランあたり)	(1レーンあたり)	(1セルあたり)
			※ペアエンド解析	※ペアエンド解析	
データ量	約7.5 Gb	約800 Mb	約3~9 Gb	2 約30 Gb	約500 Mb
(リード長 200 base の場合)	(平均150 bpの amplicon、	(1チップあたり)	(1ランあたり)	(1レーンあたり)	(1セルあたり)
	1チップあたり)		※ペアエンド解析	※ペアエンド解析	
解析手法	Ion semiconduct	tor sequencing法	Sequencing by Synthesis法	Sequencing by Synthesis法	SMRT(Silgle Molecule Real-Time) sequencing法
	・癌遺伝子などの変異 解析	・癌遺伝子などの変異 解析	・微生物の新規ドラフ ト配列決定	・ゲノム変異解析	・ゲノムドラフト解析
アプリケー ション例	(409遺伝子をター ゲットとしたCancer Panelなど)	(50遺伝子をターゲッ トとしたCancer Panel など)	・癌遺伝子などの変異 解析 ・PCR産物のディープ シーケンス	・ChIP解析 ・small RNA解析 ・mRNA解析 ・cDNA配列解析	・cDNA配列解析

14

イルミナ株式会社

次世代シーケンサー: Genome Analyzer

- 1 従来型キャピラリーシーケンサー
 - 酵素反応+電気泳導+塩基読取(384x600塩基)
 - コスト、時間がかかる
 例)「ヒトゲノムプロジェクト」
 約13年、3000億円かかった

MiSeq

250	A wel deviden databased mission had been been been been been been been bee	LAN !!
	n a china manana a china a china a china a china a china c	
	and the second design of the second	118
here	lese this religion in initial of the desired of the second	MAI .

- 2 次世代シーケンサー
 - 酵素反応+電気泳導+塩基読取(100,000,000x50塩基)
 - これまでの技術と比べて、「100分の1のコストで100倍のデータ」
 - 例)現在ヒトゲノム1人読むのに 数週間、数千万円

→ 1週間 数百万円 ····

次世代シーケンサーの原理1 サンプル調製 ~ フローセルへの固定 15

■ ゲノムDNAを抽出し、**断片化**する

3

DNA

fragment

Dense lawn

of primers

DNA断片の両端に2種類のアダプターを連結させる

1本鎖にして、5'末端をフ
 ローセル上に固定する
 フローセル上には、あらかじ
 めアダプターと相補的に結合
 するプライマーが高密度に配
 置されている

ブリッジPCR

- 固定された1本鎖DNAは、もう一方のアダプ ターの側でプライマーと結合する (橋がか かったような構造になる ④)
- DNAポリメラーゼによる伸長反応を行う ⑤
- 変性させると、フローセル上には根元がアダ プター配列の1本鎖DNAが2本できあがる⑥
- この反応を繰り返すことで、狭い面積の中で DNAを増幅することができる
 - → フローセル上に多数のDNAの「束」
 ができる ⑦

Ⅰ これらを鋳型として、配列解析を行う

Sequencing-by-synthesisによる塩基配列決定

- このdNTPは3'末端がブロックされており、1回の伸長反応で1塩基しか伸ばせない
- そのため、1塩基ごとにどのdNTPが取り込まれたかを観察し、蛍光物質とブロックを 外して次の伸長反応を行うというステップで、解析を進めていく

画像蛍光シグナルから塩基への返還

- 1塩基 伸長するごとに

 蛍光イメージを取得する
- それぞれのDNAの「束」の蛍光色の変化を調べることで、塩基配列を決定する

40

TGCTACGAT

TGCTACGAT…

TTTTTGT.

ΤΤΤΤΤΤGΤ…

60

■ 数千万~数億本の塩基配列が得られる

30

80

40

一つ一つの断片の塩基配列が短いと、アセンブルするのが困難

次世代シーケンサーで読み取ることができる塩基配列長は短いので、既に全塩基 が解読されているゲノム配列(リファレンス配列)を利用したリシークエンスや、 リファレンス配列へのマッピングなどに用いられることが多い

マッピング: Bowtie, Bowtie2, BWA など アセンブル: Velvet, EDENA, Phrap など ビューア: Tablet, IGV など

有償ではあるが、CLC Genomics Workbenchなどの解析ソフトも 良く使われる

2

Pectobacterium carotovorum ssp. carotovorum

P. carotovorum PR1株 のゲノムを抽出

MiSeqを用いてシークエンス (約300万リード)

P. carotovorum ssp. carotovorum のゲノム(リファレンス配列) に対してマッピング

- 遺伝子の有無
- ゲノム構造の比較
- SNPの検出

などの**比較ゲノム解析**ができる

П

Pectobacterium carotovorum PR1 strain (病原性 強い)

第3世代シーケンサー

61

- DNA 1分子を鋳型としてDNAポリメ
 ラーゼによるDNA合成を行う
- 1分子レベルでリアルタイムに塩基を 読み取る
- 長いリード(平均10,000bp)が出力される

- USBメモリー用のシーケンサー
- DNAポリメラーゼを用いて1本鎖DNA
 に解きほぐす
- ナノポアを通過させる → 電流の変
 化を検知して配列を決定する

塩基データ登録数の推移

■ **シークエンス技術の進歩**によって,塩基配列決定の速度はますます

遺伝子の検出、アノテーション、機能予測、進化系統解析、比較解析などを 効率よく行い、大量のシーケンスデータを有効に活用することが重要 ゲノムにコードされる遺伝子を網羅的に使用してホモロジー検索 を行ったり,比較ゲノム解析を行いたい

大量のデータを処理するためのプログラミング技術が必要

バイオインフォマティクス分野では、Perl, C++, Java, Pythonなど が良く使われていますが、本日はPythonを用いて実習を行います

Pythonの特徴

- コードの記述がシンプル
- 他人が作ったプログラムでも理解しやすい
- 深層学習(Deep learning)など、AIの分野で 良く使われている
- YouTubeやInstagramなど、Webサービスにも 使われている

プログラミング言語の 人気ランキング(2020) 1位 C/C++ 2位 Python 3位 JavaScript 4位 SQL 5位 C# 6位 Java 7位 VBA 8位 HTML/CSS 9位 PHP 10位 VB.NET

プログラミングを用いたデータ処理

■ 複数の質問配列でBLAST検索を行うと、結果が羅列した形で出力されます

- この中から,必要な情報だけを取り出すためのプログラムを作ってみましょう
- 質問配列のアクセション番号と、検索の結果ヒットしたタンパク質のアク セション番号のリストを出力するプログラムを作成してみたいと思います

デスクトップ上に、「kiso」フォルダを作成してください

※ ユーザ名に日本語が使われているときなどに、デスクトップではうまく作動しない場合が あります。その場合は、kisoフォルダを C:ドライブの直下に移動させてみてください。

授業の目標・概要

生命科学のためのデータベースの利用と基本的な解析手法について講義しま す。データベースの基礎、配列データベース、機能データベース、ホモロ ジー検索、モチーフ解析などの基本的な手法について解説します。

BLAST.txt

BLAST.txt

parse.py

の2つのファイルをダウンロードして、kisoフォルダに

入れてください

コマンドプロンプトを立ち上げてください

云タート → Windowsシステムツール → コマンドプロンプト

まず, kisoフォルダに移動します

> cd

「cd(スペース)」と入力した後(まだEnterキーは押さない), kiso フォルダをコマンドプロンプト上にドラッグ&ドロップしてください

下記のように表示されますので, Enterキーを押してください

> cd C:¥Users¥iu¥Desktop¥kiso

parse.pyをメモ帳やワードパッドなどを使って開いてください

Agribioinformatics

■ 以下のように編集して,上書き保存してください

Agribioinformatics
print('Hello¥nPython')

¥n は改行を表します

「¥」は、バックスラッシュ「\」を押してください

Windows上だと「¥」と表示されます

以下のコマンドを入力して、プログラムを実行してください

> python parse.py

- ※ 先頭の > は入力しないでください

27

変数は、「文字列」で表します

- ・使用できる文字は アルファベット、数字、漢字など
- ・一文字目に数字(0~9)は使用できない
- ・大文字と小文字は区別される
- ・予約語(if など)は使用できない
- 以下のように編集して保存してください(灰色の文字は入力しない でください)

```
# Agribioinformatics
lines = 'Hello¥nPython' ← lineに文字列を入れる
print(lines) ← lineを出力する
```

以下のコマンドを入力して、 プログラムを実行してください

> python parse.py

リダイレクト

コマンドプロンプトに文字列を表示する代わりに、テキストファイ ルにデータを出力することができます

以下のコマンドを入力して、プログラムを実行してください

> python parse.py > output1.txt

1

フォルダの中に output1.txt という名前のファイルができるはず

メモ帳やワードパッドでoutput1.txtを開いてみてください

Hello

Python

BLAST検索結果のデータを読み込む

- 既存のテキストファイルからデータを読み込ませて、それを構文解 析していきます
- 「BLAST.txt」というBLAST検索結果のファイルを用意しておきました. メモ帳などを使って中身を見てください.
- Mycoplasma pneumoniaeの約700個のタンパク質を質問配列に使って、 Mycoplasma genitaliumのタンパク質に対してProtein BLASTを行った 結果になります(700回分の結果が連なっています)

BLASTP 2.2.19 [Nov-02-2008]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

BLAST検索結果の構造

BLASTP 2.2.5 [Nov-16-2002] Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, **質問配列(Query)**に Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search ついて書かれた行 programs", Nucleic Acids Res. 25:3389-3402. Query= gi | 16131851 | ref | NP_418449.1 | glucosephosphate isomerase [Escherichia coli K12] (549 letters) Database: yeast.aa 6298 sequences; 2,974,038 total letters Score Е (bits) Value Sequences producing significant alignments: BLAST検索の結果、 ref NP 009755.1 Glucose-6-phosphate isomerase; Pgilp 641 0.0 ref NP_011646.1 Ygr130cp ヒットした配列に 30 0.98 ref NP 013146.1 spindle pole body component; Stu2p 1.7 29 ついて書かれた行 ref NP 013847.1 (putative) involved in cell wall biogenesis; Ec... 3.7 28 ref NP 013523.1 Ylr419wp 3.7 28 >ref NP 009755.1 Glucose-6-phosphate isomerase; Pgilp Length = 554Score = 641 bits (1654), Expect = 0.0 Identities = 326/549 (59%), Positives = 401/549 (73%), Gaps = 16/549 (2%) スコアや F-value Query: 7 TOTAAWOALOKHFDEM-KDVTIADLFAKDGDRFSKFSATFDD---OMLVDYSKNRITEE 61 T+ AW LOK ++ K +++ FKD RFK + TF + ++L DYSKN + +E sbjct: 13 TELPAWSKLOKIYESOGKTLSVKOEFOKDAKRFEKLNKTFTNYDGSKILFDYSKNLVNDE 72 Query: 62 TLAKLQDLAKECDLAGAIKSMFSGEKINRTENRAVLHVALRNRSNTPILVDGKDVMPEVN 121 +A L +LAKE ++ G +MF GE IN TE+RAV HVALRNR+N P+ VDG +V PEV+ Sbjct: 73 IIAALIELAKEANVTGLRDAMFKGEHINSTEDRAVYHVALRNRANKPMYVDGVNVAPEVD 132

つの検索結果が終わると、次の質問配列の検索結果が始まる

読み込み用のファイルを開く

open 関数を使ってファイルを開きます

■ 以下のように編集して保存してください

# Agribioinform	natics		
DATA = open('BI	AST.txt', 'r')	←ファイ	ルを開いてDATAに入れる
lines = 'Hello	fnPython'	'r'	読み込み用に開く
print(DATA)	←DATAを出力する		
DATA.close()	←ファイルを閉じる		

プログラムを実行してください (上矢印キー + Enter で前回と同じコマンドを実行できます)

> python parse.py > output1.txt

(ただし、上記のプログラムではファイルの中身を見ることはできません)

ファイルの中身を読み込む

readlinesメソッドを使ってファイルの中身を読み込みます

■ 以下のように編集して保存してください

# Agribioinformatics	
DATA = open('BLAST.tx	t', 'r') ←ファイルを開いてDATAに入れる
<pre>lines = DATA.readline</pre>	s() ←DATAを読み込んでlinesに入れる
print(<mark>lines</mark>)	←linesを出力する
DATA.close()	←ファイルを閉じる

- プログラムを実行してください(上矢印キー + Enter で前回と同じコ マンドを実行できます)
- メモ帳やワードパッドで output1.txt を開いてみてください
- BLAST.txtと同じ内容が出力されているはずです

for文を使って1行ずつ解析する

1行ずつ構文解析するプログラムにしたいので、for文を利用して 1行ずつ読み込むようにしてみましょう

- 1 次の行からfor文の中身になるという意味のコロンを入れます
- 2 for文で繰り返す行(ブロック)には、先頭にtabを入れて字下げします
- 3 linesの中身がなくなるまで、この部分が繰り返されます
- 実行してみましょう. 全てのデータが出力されていればOKです.

Pythonにおけるブロックについて

他のプログラミング言語、例えばJava や Perl では { から } までが ブロックとなります

if (条件式) { ブロック内の処理1 ブロック内の処理2 }

それに対して Python ではインデント(字下げ)されている行を ブロックとして扱います

if 条件式: ブロック内の処理1 ブロック内の処理2

パターンに当てはまるかどうかを調べる「re.search関数」

■ 文字列「DNA」を含むかどうかを1行ずつ調べてみましょう

```
# Agribioinformatics
import re
DATA = open('BLAST.txt', 'r')
lines = DATA.readlines()
for line in lines:
    if re.search('DNA', line):
        print(line)
DATA.close()
```

このあと正規表現(regular expression)を使うので、reモジュールを読み込みます

- 2 for文のブロックなのでtabを1回入れて、1段下げます.変数lineにDNAという 文字列が含まれていれば「真」となり、次の行のブロックを実行します.
- S for文のブロックであるとともに、if文のブロックでもあるので先頭にtabを2回 入れて、2段下げてください.

■ Query= で始まる行には、質問配列の情報が書かれています

■ 文字列「Query=」を含む行を抜き出してみましょう

```
# Agribioinformatics
import re
DATA = open('BLAST.txt', 'r')
lines = DATA.readlines()
for line in lines:
   query = re.search('Query=', line)
   if query: ← 変数queryに何か入っていたら
      print(line) ← その行を出力する
DATA.close()
```

このあと質問配列の番号(Gene index)を抜き出していくので、 re.search関数の結果を変数queryに入れておきます

Query= gi|13507740|ref|NP_109689.1| DNA polymerase III beta subunit Query= gi|13507741|ref|NP_109690.1| similar to j-domain of DnaJ Query= gi|13507742|ref|NP_109691.1| DNA gyrase subunit B [Mycoplasma

正規表現による検索

- 検索する文字列の部分には パターンと呼ばれるものを入れること ができます
- パターンとは、「Mで始まる文字列」や「3文字の文字列」など、
 文字列の特徴を記述したものです
- このパターンの記述方法を正規表現といいます.

例えば,

DNA

DNNA

DNNNNNA

DNNNNNNNNNNNNN

これらすべてを検索するには, DN+A と記述します

		■文字	シラス		39
正規表	現の例	以下のものは、次のような1文字にマッチします。			
			[abc]	aかbかcのどれか	
			[a-z]	任意の小文字	
			[^abc]	aでもbでもcでもない文字	
		3	¥d	数字 (digit)	
			¥D	数字以外	
			¥w	英数字 (word)	
位置指定			¥W	英数字以外	
パターンの位	置を指定します。	2	¥s	空白文字 (space)	
4 、	先頭		¥S	空白文字以外	
\$	末尾		¥b	単語境界 (word boundary)	
	_	1		任意の一文字	
エスケー	7				

/、^、\$ などの、正規表現的に意味のある特殊記号自体を検索したい局面では、¥ でエスケープします。

Г

 ^¥^
 ^という字で始まる行にマッチ

 5
 ¥¥

 ¥自体にマッチ

すぐわかるPerl(技術評論社)より引用

以下の記号を使って、文字または文字クラスの繰り返しとマッチします。ここで は文字または文字クラスをxと書きます。

	X*	0回以上の繰り返し
6	x+	1回以上の繰り返し。xx*と同じ
	x?	0回か1回
	x{5}	5回繰り返し。xxxxx と同じ
	x{3,}	3回以上繰り返し。xxx+と同じ
	x{3,5}	3回以上5回以下繰り返し。xxxx?x?と同じ

■グループと選択

文字列を繰り返すときは()を使ってグループ化します。

su(mo)+ sumo, sumomo, sumomomo などにマッチする

いくつかのパターンのどれかにマッチさせるときは | を使います。

love kiss love か kiss にマッチする

stud(ylies) study か studies にマッチする

su(mi i mo) {2,3} sumimi, sumimo, sumomi, sumomo, sumimimi, sumimomi, sumomomi, sumomimo, sumimomo, sumomomoのいずれかにマッチする

正規表現の練習

■ 以下のアミノ酸配列はATP結合モチーフ(P-loop)です

•••• G X X X X G K S ••••

あるいは

・・・ G X X X X G K T **・・・** (X はどのアミノ酸でも良い)

■ ATP結合モチーフを正規表現で表してみてください

```
:

for line in lines:

query = re.search('Query=', line)

if query:

print(line)

DATA.close()

試しにこの部分を上の正規表現に変えて、

プログラムを動かしてみてください
```

正規表現による検索

Gene indexを含む文字列を抽出してみましょう.

Query= gi|13507742|ref|NP_109691.1| DNA gyrase

Query= と ref ではさまれた連続した文字列を含む行を抽出するには

「.」(任意の文字) と 「+」(1文字以上の連続文字) を使って以下のようにします

```
for line in lines:
    query = re.search(r'Query=¥s.+ref', line)
    if query:
        print(line)
DATA.close()
```

バックスラッシュを検索するときのために、raw文字にしておきます
 ¥s (バックスラッシュ s)はスペースを表します

カッコを使った記憶

1 パターンの中で**括弧()**を使うと、その括弧で囲まれた文字列が 変数queryの中に格納されます

2 格納された文字列は groupメソッドで呼び出すことができます

以下のようにGene indexが出力されていればOKです

```
gi|13507740|
gi|13507741|
gi|13507742|
```

次に、BLAST検索によってヒットしたタンパク質の情報 (例えば >gi|12044851|ref|NP_072661.1| DNA polymerase III) を含む行を抽出してみましょう

lineの中に「>gi」が含まれるかどうかを変数hitに入れます

```
i
for line in lines:
    query = re.search(r'Query=¥s(.+)ref', line)
    hit = re.search(r'>gi', line)
    if query:
        print(query.group(1))
    if hit:
        print(line)
DATA.close()
```

- 1 lineの中に「>gi」が含まれていれば、その情報がhitに入る
- 2 もしhitに何か入っていれば出力する

- ヒットしたタンパク質情報のref番号だけを抽出してみましょう
 >gi|12044851|ref|NP_072661.1| DNA polymerase III)
- |(バーティカルバー)ではさまれた文字列を取り出したいのですが,
 '>gi.+refi.+i' (>giで始まり、任意の連続した文字列、ref、
 |で挟まれた連続した文字列)の表現ではうまくいきません

```
for line in lines:
  query = re.search(r'Query=¥s(.+)ref', line)
  hit = re.search(r'>gi.+ref(.+), line)
                                                   「|」 Shiftを押しながら
  if query:
        print(query.group(1))
                                                                 Back
  if hit:
                                                                Enter
        print(line)
                                                             10
DATA.close()
                                                                 ۵
Shift
                                                              †
PgUp
                                                         Ctrl
                                                            Home
                                                              PgDn End
```

- "|"は正規表現で使用する特殊な文字であるため、別の意味になってしまうからです
- ここで使う "|" が正規表現でないことを示すために、 "|" の前に ¥(バックスラッシュ)をつけます

```
i
for line in lines:
    query = re.search(r'Query=Ys(.+)ref', line)
    hit = re.search(r'>gi.+refY1.+Y1', line)
    if query:
        print(query.group(1))
    if hit:
        print(line)
DATA.close()
```

■ 括弧を使って, ref番号だけを抽出してみましょう

>ref|NP_072866.1| topoisomerase IV, subunit A

```
i
for line in lines:
    query = re.search(r'Query=¥s(.+)ref', line)
    hit = re.search(r'>gi.+ref¥i(.+)¥i', line)
    if query:
        print(query.group(1))
    if hit:
        print(hit.group(1))
DATA.close()
```

以下のようにQueryとGene indexが出力されていればOKです

質問配列の番号→ ヒットした配列の番号→ gi|13507740| NP_072661.1 gi|13507741| NP_072662.1| .

- print関数では自動的に最後に改行が入ってしまうので、end=''と指定 して改行しないようにしておき、質問配列が見つかったら改行するよう にします

```
:
for line in lines:
  query = re.search(r'Query=¥s(.+)ref', line)
  hit = re.search(r'>gi.+ref¥i(.+)¥i', line)
  if query:
     print('¥n', query.group(1), end='')
  if hit:
     print('¥t', hit.group(1), end='')
DATA.close()
```

質問配列とヒットした配列のアクセション番号を抽出できるようになりました

QueryのGene Index gi135077401 gi135077411 gi135077421 gi135077431 gi135077441 gi135077451 gi135077461 gi135077471 gi1135077481

ヒットしたタンパク質のref番号 NP_072661.1 NP_072662.1 NP_072663.1 NP_072865.1 NP_072664.1 NP_072866.1 NP_072665.1 NP_072666.1 NP_072667.1 NP_072668.1 NP_072998.1 NP_072669.1

50

ヒットした配列のうち最も相同性の高いものだけを表示してみましょう

新たに mode という変数を使い、これが 0か1かを指標にします

```
# Agribioinformatics
   import re
   DATA = open('BLAST.txt', 'r')
   lines = DATA.readlines()
   mode = 0
   for line in lines:
     query = re.search(r'Query=¥s(.+)ref', line)
     hit = re.search(r'>gi.+ref¥!(.+)¥!', line)
     if query:
          print('¥n', query.group(1), end='')
1
          mode = 1
     if hit and mode == 1:
         print('¥t', hit.group(1), end='')
          mode = 0
   DATA.close()
```

2

2 その後の最初に出てくるヒット配列(>refの行)を見つけたら、番号を抽出して mode = 0 に戻します(次の質問配列を見つけるまで抽出しません)

🗕 2つ以上の条件が揃ったときにif文の中身を

動かしたいときは and でつなぎます

if hit and mode == 1:

if文の中で「もし ~ なら」を表現するときは
 イコールを2つ(==)にします

以下のように**質問配列と最も相同性の高いヒット配列**のアクセション番号 が抽出できていれば大丈夫です

質問配列のGene Index ヒットしたタンパク質のref番号

gi:13507740; gi:13507741; gi:13507742; gi:13507743; gi:13507744; gi:13507745; gi:13507749; gi:13507749; gi:13507750; NP_072661.1 NP_072662.1 NP_072663.1 NP_072664.1 NP_072665.1 NP_072666.1 } 相同性の高い配列がヒットし ない場合は空欄になります

(46ページ参照)

13507740	NP 072661.1
43507744	
13507741	NP_072662.1
13507742	NP_072663.1
13507743	NP_072664.1
13507744	NP_072665.1
13507745	NP_072666.1
13507746	NP_072667.1
13507747	NP_072668.1
13507748	NP_072669.1

E-valueの値を抽出して、以下のような出力結果になるプログラム
 を作成してください

課題1と同じファイル名にならないように, output2.txtという ファイル名で結果を出力してください

- 出力したテキストファイル(output1.txt と output2.txt)を、 メールに添付して提出してください
- 送付先は kenro[at]hosei.ac.jp です([at]を@に変換)
- メールの件名は「Python課題」にしてください
- メール本文に、以下のように「氏名」「所属」「学生証番号」 「本日の講義の感想」を記載してください

氏名:○○○○○
所属:××××専攻 △△△○研究室
学生証番号:□□□□□
講義の感想: