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Simple regression analysis 

Changes	in	one	variable	may	affect	another,	such	as	the	relationship	between	breeding	and	
cultivation	conditions	and	the	growth	of	animals	and	plants.	One	of	the	statistical	methods	to	
model	the	relationship	between	these	variables	is	regression	analysis.	By	statistically	modeling	
the	relationship	between	variables,	it	becomes	possible	to	understand	the	causal	relationship	
that	exists	between	variables,	and	to	predict	one	variable	from	another.	Here,	first,	we	will	
discuss	simple	regression	analysis	that	models	the	relationship	between	two	variables	as	a	
“linear	relationship”.	In	this	case,	the	mechanism	of	single	regression	analysis	will	be	explained	
using	the	analysis	of	rice	data	(Zhao	et	al.	2011,	Nature	Communications	2:	467)	as	an	example.	

First,	read	the	rice	data	in	the	same	way	as	before.	Before	entering	the	following	command,	
change	your	R	working	directory	to	the	directory	(folder)	where	the	two	input	files	
(RiceDiversityPheno.csv,	RiceDiversityLine.csv)	are	located.	

# this data set was analyzed in Zhao 2011 (Nature Communications 2:467)	
pheno <- read.csv("RiceDiversityPheno.csv")	
line <- read.csv("RiceDiversityLine.csv")	
line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID")	
head(line.pheno)[,1:12]	

##   NSFTV.ID GSOR.ID        IRGC.ID Accession.Name Country.of.origin  Latitu
de	
## 1        1  301001 To be assigned       Agostano             Italy 41.8719
40	
## 2        3  301003         117636  Ai-Chiao-Hong             China 27.9025
27	
## 3        4  301004         117601       NSF-TV 4             India 22.9030
81	
## 4        5  301005         117641       NSF-TV 5             India 30.4726
64	
## 5        6  301006         117603       ARC 7229             India 22.9030
81	
## 6        7  301007 To be assigned          Arias         Indonesia -0.7892
75	
##   Longitude Sub.population     PC1     PC2     PC3     PC4	
## 1  12.56738            TEJ -0.0486  0.0030  0.0752 -0.0076	
## 2 116.87256            IND  0.0672 -0.0733  0.0094 -0.0005	
## 3  87.12158            AUS  0.0544  0.0681 -0.0062 -0.0369	
## 4  75.34424       AROMATIC -0.0073  0.0224 -0.0121  0.2602	
## 5  87.12158            AUS  0.0509  0.0655 -0.0058 -0.0378	
## 6 113.92133            TRJ -0.0293 -0.0027 -0.0677 -0.0085	

Prepare	analysis	data	by	extracting	only	the	data	used	for	simple	regression	analysis	from	the	
read	data.	Here	we	analyze	the	relationship	between	plant	height	(Plant.height)	and	flowering	
timing	(Flowering.time.at.Arkansas).	In	addition,	principal	component	scores	(PC1	to	PC4)	
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representing	the	genetic	background	to	be	used	later	are	also	extracted.	Also,	remove	samples	
with	missing	values	in	advance.	

# extract variables for regression analysis	
data <- data.frame(	
    height = line.pheno$Plant.height,	
    flower = line.pheno$Flowering.time.at.Arkansas,	
    PC1 = line.pheno$PC1,	
    PC2 = line.pheno$PC2,	
    PC3 = line.pheno$PC3,	
    PC4 = line.pheno$PC4)	
data <- na.omit(data)	
head(data)	

##     height    flower     PC1     PC2     PC3     PC4	
## 1 110.9167  75.08333 -0.0486  0.0030  0.0752 -0.0076	
## 2 143.5000  89.50000  0.0672 -0.0733  0.0094 -0.0005	
## 3 128.0833  94.50000  0.0544  0.0681 -0.0062 -0.0369	
## 4 153.7500  87.50000 -0.0073  0.0224 -0.0121  0.2602	
## 5 148.3333  89.08333  0.0509  0.0655 -0.0058 -0.0378	
## 6 119.6000 105.00000 -0.0293 -0.0027 -0.0677 -0.0085	

First,	visualize	the	relationship	between	two	variables.	

# look at the relationship between plant height and flowering time	
plot(data$height ~ data$flower)	
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As	shown	in	the	above	figure,	the	earlier	the	flowering	time,	the	shorter	the	plant	height,	while	
the	later	the	flowering	time,	the	taller	the	plant	height.	

Let’s	create	a	simple	regression	model	that	explains	the	variation	in	plant	height	by	the	
difference	in	flowering	timing.	

# perform single linear regression	
model <- lm(height ~ flower, data = data)	

The	result	of	regression	analysis	(estimated	model)	is	assigned	to	“model”.	Use	the	function	
“summary”	to	display	the	result	of	regression	analysis.	

# show the result	
summary(model)	

## 	
## Call:	
## lm(formula = height ~ flower, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -43.846 -13.718   0.295  13.409  61.594 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 58.05464    6.92496   8.383 1.08e-15 ***	
## flower       0.67287    0.07797   8.630  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 19 on 371 degrees of freedom	
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1649 	
## F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16	

I	will	explain	the	results	displayed	by	executing	the	above	command	in	order.	

Call:	
lm(formula	=	height	~	flower,	data	=	data)	

This	is	a	repeat	of	the	command	you	entered	earlier.	If	you	get	this	output	right	after	you	type	
it,	it	does	not	seem	to	be	useful	information.	However,	if	you	make	multiple	regression	models	
and	compare	them	as	described	later,	it	may	be	useful	because	you	can	reconfirm	the	model	
employed	in	the	analysis.	Here,	assuming	that	the	plant	height	is	𝑦! 	and	the	flowering	timing	is	
𝑥! ,	the	regression	analysis	is	performed	with	the	model	

𝑦! = 𝜇 + 𝛽𝑥! + 𝜖! 	

As	mentioned	earlier,	𝑥! 	is	called	independent	variable	or	explanatory	variable,	and	𝑦! 	is	called	
dependent	variable	or	response	variable.	𝜇	and	𝛽	are	called	parameters	of	the	regression	
model,	and	𝜖! 	is	called	error.	Also,	𝜇	is	called	population	intercept	and	𝛽	is	called	population	
regression	coefficient.	

In	addition,	since	it	is	not	possible	to	directly	know	the	true	values	of	the	parameters	𝜇	and	𝛽	
of	the	regression	model,	estimation	is	performed	based	on	samples.	The	estimates	of	the	
parameters	𝜇	and	𝛽,	which	are	estimated	from	the	sample,	are	called	sample	intercept	and	
sample	regression	coefficient,	respectively.	The	values	of	𝜇	and	𝛽	estimated	from	the	samples	
are	denoted	by	𝑚	and	𝑏,	respectively.	Since	𝑚	and	𝑏	are	values	estimated	from	the	samples,	
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they	are	random	variables	that	vary	depending	on	the	samples	selected	by	chance.	Therefore,	
it	follows	a	probability	distribution.	Details	will	be	described	later.	

Residuals:	
Min	1Q	Median	3Q	Max	
-43.846	-13.718	0.295	13.409	61.594	

This	output	gives	an	overview	of	the	distribution	of	residuals.	You	can	use	this	information	to	
check	the	regression	model.	For	example,	the	model	assumes	that	the	expected	value	(average)	
of	the	error	is	0.	You	can	check	whether	the	median	is	close	to	it.	You	can	also	check	whether	
the	distribution	is	symmetrical	around	0,	i.e.,	whether	the	maximum	and	minimum	or	the	first	
and	third	quantiles	have	almost	the	same	value.	In	this	example,	the	maximum	value	is	slightly	
larger	than	the	minimum	value,	but	otherwise	no	major	issues	are	found.	

Coefficients:	
Estimate	Std.	Error	t	value	Pr(>|t|)	
(Intercept)	58.05464	6.92496	8.383	1.08e-15	***	
flower	0.67287	0.07797	8.630	<	2e-16	***	
—	
Signif.	codes:	0	‘’	0.001	‘’	0.01	‘’	0.05	‘.’	0.1	‘	’	1	

The	estimates	of	parameters	𝜇	and	𝛽,	i.e.,	𝑚	and	𝑏,	and	their	standard	errors,	𝑡	values	and	𝑝	
values	are	shown.	Asterisks	at	the	endo	of	each	line	represent	significance	levels.	One	star	
represents	5%,	two	stars	1%,	and	three	stars	0.1%.	

Residual	standard	error:	19	on	371	degrees	of	freedom	
Multiple	R-squared:	0.1672,	Adjusted	R-squared:	0.1649	
F-statistic:	74.48	on	1	and	371	DF,	p-value:	<	2.2e-16	

The	first	line	shows	the	standard	deviation	of	the	residuals.	This	is	the	value	represented	by	𝑠,	
where	𝑠"	is	the	estimated	value	of	the	error	variance	𝜎".	The	second	line	is	the	determination	
coefficient	𝑅".	This	index	and	the	adjusted	𝑅"	represent	how	well	the	regression	explain	the	
variation	of	y.	The	third	line	is	the	result	of	the	F	test	that	represents	the	significance	of	the	
regression	model.	It	is	a	test	under	the	hypothesis	(null	hypothesis)	that	all	regression	
coefficients	are	0,	and	if	this	𝑝	value	is	very	small,	the	null	hypothesis	is	rejected	and	the	
alternative	hypothesis	(regression	coefficient	is	not	0)	is	taken	to	be	adopted.	

Let’s	look	at	the	results	of	regression	analysis	graphically.	First,	draw	a	scatter	plot	and	draw	a	
regression	line.	

# again, plot the two variables	
plot(data$height ~ data$flower)	
abline(model, col = "red")	
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Next,	calculate	and	plot	the	value	of	𝑦	when	the	data	is	fitted	to	the	regression	model.	

# calculate fitted values	
height.fit <- fitted(model)	
plot(data$height ~ data$flower)	
abline(model, col = "red")	
points(data$flower, height.fit, pch = 3, col = "green")	
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The	values	of	𝑦	calculated	by	fitting	the	model	all	lie	on	a	straight	line.	

An	observed	value	𝑦	is	expressed	as	the	sum	of	the	variation	explained	by	the	regression	
model	and	the	error	which	is	not	explained	by	the	regression.	Let’s	visualize	the	error	in	the	
figure	and	check	the	relationship.	

# plot residuals	
plot(data$height ~ data$flower)	
abline(model, col = "red")	
points(data$flower, height.fit, pch = 3, col = "green")	
segments(data$flower, height.fit,	
         data$flower, height.fit + resid(model), col = "gray")	
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The	value	of	𝑦	is	expressed	as	the	sum	of	the	values	of	𝑦	calculated	by	fitting	the	model	(green	
points)	and	the	residuals	of	the	model	(gray	line	segments)	

Let’s	use	a	regression	model	to	predict	𝑦	for	𝑥 = (60,80, . . . ,140),	which	are	not	actually	
observed.	

# predict unknown data	
height.pred <- predict(model, data.frame(flower = seq(60, 140, 20)))	
	
plot(data$height ~ data$flower)	
abline(model, col = "red")	
points(data$flower, height.fit, pch = 3, col = "green")	
segments(data$flower, height.fit,	
         data$flower, height.fit + resid(model), col = "gray")	
points(seq(60, 140, 20), height.pred, pch = 2, col = "blue")	
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All	the	predicted	values	will	locate	again	on	the	line.	

Quiz 1 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

Go	to	https://www.menti.com/	and	type	in	the	number	I	will	tell	you	in	the	lecture.	Then,	
register	your	nickname	and	wait	for	the	quiz	to	start.	

Method for calculating the parameters of a regression model 

Here	we	will	explain	how	to	calculate	a	regression	model.	Also,	let’s	calculate	the	regression	
coefficients	while	actually	using	the	R	command.	

As	mentioned	earlier,	the	simple	regression	model	is	

𝑦! = 𝜇 + 𝛽𝑥! + 𝜖! 	

There	are	various	criteria	for	what	is	considered	“optimal”,	but	here	we	consider	minimizing	
the	error	𝜖! 	across	the	data.	Since	errors	can	take	both	positive	and	negative	values,	errors	
cancels	each	other	in	their	simple	sum.	So,	we	consider	minimizing	the	sum	of	squared	error	
(SSE).	That	is,	consider	𝜇	and	𝛽	that	minimize	the	following	equation:	

𝑆𝑆𝐸 =:𝜖!"
#

!$%

=:(
#

!$%

𝑦! − (𝜇 + 𝛽𝑥!))"	
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式(1) 	

The	following	figure	shows	the	change	in	SSE	for	various	values	of	𝜇	and	𝛽.	The	commands	to	
draw	the	figure	is	a	little	complicated,	but	they	are	as	follows:	

#visualize the plane for optimization	
x <- data$flower	
y <- data$height	
mu <- seq(0, 100, 1)	
beta <- seq(0, 2, 0.02)	
sse <- matrix(NA, length(mu), length(beta))	
for(i in 1:length(mu)) {	
    for(j in 1:length(beta)) {	
        sse[i, j] <- sum((y - mu[i] - beta[j] * x)^2)	
    }	
}	
persp(mu, beta, sse, col = "green")	

	

Draw	the	graph	using	“plotly”	package	

# draw the figure with plotly	
df <- data.frame(mu, beta, sse)  	
plot_ly(data = df, x = ~mu, y = ~beta, z = ~sse) %>%  	
add_surface()  	

It	should	be	noted	that	at	the	point	where	𝑆𝑆𝐸	becomes	the	minimum	in	Figure	3,	𝑆𝑆𝐸	should	
not	change	(the	slope	of	the	tangent	is	zero)	even	when	𝜇	or	𝛽	changes	slightly.	Therefore,	the	
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coordinates	of	the	minimum	point	can	be	determined	by	partially	differentiating	the	equation	
(1)	with	𝜇	and	𝛽,	and	setting	the	value	to	zero.	That	is,	

𝜕𝑆𝑆𝐸
𝜕𝜇 = 0,

𝜕𝑆𝑆𝐸
𝜕𝛽 = 0	

We	should	obtain	the	values	of	𝜇	and	𝛽	to	satisfy	these.	The	method	of	calculating	the	
parameters	of	a	regression	model	through	minimizing	the	sum	of	squares	of	errors	in	this	way	
is	called	the	least	squares	method.	

Note	that	𝜇	minimizing	SSE	is	

𝜕𝑆𝑆𝐸
𝜕𝜇 = −2:(

#

!$%

𝑦! − 𝜇 − 𝛽𝑥!) = 0	

⇔:𝑦!

#

!$%

− 𝑛𝜇 − 𝛽:𝑥!

#

!$%

= 0	

⇔ 𝜇 =
∑ 𝑦!#
!$%

𝑛 − 𝛽
∑ 𝑥!#
!$%

𝑛 = 𝑦 − 𝛽𝑥	

Also,𝛽	minimizing	𝑆𝑆𝐸	is	

𝜕𝑆𝑆𝐸
𝜕𝛽 = −2:𝑥!

#

!$%

(𝑦! − 𝜇 − 𝛽𝑥!) = 0	

⇔:𝑥!

#

!$%

𝑦! − 𝜇:𝑥!

#

!$%

− 𝛽:𝑥!"
#

!$%

= 0	

⇔:𝑥!

#

!$%

𝑦! − 𝑛(𝑦 − 𝛽𝑥)𝑥 − 𝛽:𝑥!"
#

!$%

= 0	

⇔:𝑥!

#

!$%

𝑦! − 𝑛𝑥𝑦 − 𝛽(:𝑥!"
#

!$%

− 𝑛𝑥") = 0	

⇔ 𝛽 =
∑ 𝑥!#
!$% 𝑦! − 𝑛𝑥𝑦
∑ 𝑥!"#
!$% − 𝑛𝑥"

=
𝑆𝑆𝑋𝑌
𝑆𝑆𝑋 	

Here,	𝑆𝑆𝑋𝑌	and	𝑆𝑆𝑋	are	sum	of	products	of	deviation	in	𝑥	and	𝑦	and	deviation	the	sum	of	
squares	of	deviation	in	𝑥,	respectively.	

𝑆𝑆𝑋𝑌 =:(
#

!$%

𝑥! − 𝑥)(𝑦! − 𝑦)	

=:𝑥!

#

!$%

𝑦! − 𝑥:𝑦!

#

!$%

− 𝑦:𝑥!

#

!$%

+ 𝑛𝑥𝑦	

=:𝑥!

#

!$%

𝑦! − 𝑛𝑥𝑦 − 𝑛𝑦𝑥 + 𝑛𝑥𝑦	
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=:𝑥!

#

!$%

𝑦! − 𝑛𝑥𝑦	

𝑆𝑆𝑋 =:(
#

!$%

𝑥! − 𝑥)"	

=:𝑥!"
#

!$%

− 2𝑥:𝑥!

#

!$%

− 𝑛𝑥"	

=:𝑥!

#

!$%

𝑦! − 2𝑛𝑥
" + 𝑛𝑥"	

=:𝑥!

#

!$%

𝑦! − 𝑛𝑥
"	

The	values	of	𝜇	and	𝛽	minimizing	𝑆𝑆𝐸	are	the	estimates	of	the	parameters,	and	let	the	
estimates	be	represented	by	𝑚	and	𝑏.	That	is,	

𝑏 =
𝑆𝑆𝑋𝑌
𝑆𝑆𝑋 	

𝑚 = 𝑦 − 𝑏𝑥	

Now	let’s	calculate	the	regression	coefficients	based	on	the	above	equation.	First,	calculate	the	
sum	of	products	f	deviation	and	the	sum	of	squares	of	deviation.	

# calculate sum of squares (ss) of x and ss of xy	
n <- length(x)	
ssx <- sum(x^2) - n * mean(x)^2	
ssxy <- sum(x * y) - n * mean(x) * mean(y)	

First	we	calculate	the	slope	𝑏.	

# calculate b	
b <- ssxy / ssx	
b	

## [1] 0.6728746	

Then	calculate	the	intercept	𝑚	

# calculate m	
m <- mean(y) - b * mean(x)	
m	

## [1] 58.05464	

Let’s	draw	a	regression	line	based	on	the	calculated	estimates.	

# draw scatter plot and regression line 	
plot(y ~ x)	
abline(m, b)	
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Let’s	make	sure	that	the	same	regression	line	was	obtained	as	the	function	lm	which	we	used	
earlier.	

Note	that	once	the	regression	parameters	𝜇	and	𝛽	are	estimated,	it	is	possible	to	calculate	𝑦C! ,	
which	is	the	value	of	𝑦	corresponding	to	a	given	𝑥! .	That	is,	

𝑦&D = 𝑚 + 𝑏𝑥! 	

This	makes	it	possible	to	calculate	the	value	of	𝑦	when	the	model	is	fitted	to	the	observed	𝑥,	or	
to	predict	𝑦	if	only	the	value	of	𝑥	is	known.	Here,	let’s	calculate	the	value	of	𝑦	when	the	model	
is	fitted	to	the	observed	𝑥,	and	draw	scatter	points	on	the	figure	drawn	earlier.	

# calculate fitted values	
y.hat <- m + b * x	
lim <- range(c(y, y.hat))	
plot(y, y.hat, xlab = "Observed", ylab = "Fitted", xlim = lim, ylim = lim)	
abline(0, 1)	
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Let’s	calculate	the	correlation	coefficient	between	the	two	to	find	the	degree	of	agreement	
between	the	observed	and	fitted	values.	

# calculate correlation between observed and fitted values	
cor(y, y.hat)	

## [1] 0.408888	

In	fact,	the	square	of	this	correlation	coefficient	is	the	proportion	of	the	variation	of	𝑦	
explained	by	the	regression	(coefficient	of	determination,	𝑅"	value).	Let’s	compare	these	two	
statistics.	

# compare the square of the correlation and R2 	
cor(y, y.hat)^2	

## [1] 0.1671894	

summary(model)	

## 	
## Call:	
## lm(formula = height ~ flower, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -43.846 -13.718   0.295  13.409  61.594 	
## 	
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## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 58.05464    6.92496   8.383 1.08e-15 ***	
## flower       0.67287    0.07797   8.630  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 19 on 371 degrees of freedom	
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1649 	
## F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16	

Quiz 2 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

If	you	close	the	page	of	the	quiz,	go	to	https://www.menti.com/	and	type	in	the	number	I	will	
tell	you	in	the	lecture.	

Significance test of a regression model 

When	the	linear	relationship	between	variables	is	strong,	a	regression	line	fit	well	to	the	
observations,	and	the	relationship	between	both	variables	can	be	well	modeled	by	a	regression	
line.	However,	when	a	linear	relationship	between	variables	is	not	clear,	modeling	with	a	
regression	line	does	not	work	well.	Here,	as	a	method	to	objectively	confirm	the	goodness	of	fit	
of	the	estimated	regression	model,	we	will	explain	a	test	using	analysis	of	variance.	

First,	let’s	go	back	to	the	simple	regression	again.	

model <- lm(height ~ flower, data = data)	

The	significance	of	the	obtained	regression	model	can	be	tested	using	the	function	anova.	

# analysis of variance of regression	
anova(model)	

## Analysis of Variance Table	
## 	
## Response: height	
##            Df Sum Sq Mean Sq F value    Pr(>F)    	
## flower      1  26881 26881.5  74.479 < 2.2e-16 ***	
## Residuals 371 133903   360.9                      	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

As	a	result	of	the	analysis	of	variance,	the	term	of	flowering	time	is	highly	significant	(𝑝 <
0.001),	and	the	goodness	of	fit	of	the	regression	model	that	the	flowering	timing	influences	
plant	height	is	confirmed.	

Analysis	of	variance	for	regression	models	involves	the	following	calculations:	First	of	all,	“Sum	
of	squares	explained	by	regression”	can	be	calculated	as	follows.	

𝑆𝑆𝑅 =:(
#

!$%

𝑦C! − 𝑦)"	
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=:(
#

!$%

𝜇 + 𝑏𝑥! − (𝜇 + 𝑏𝑥))"	

= 𝑏":(
#

!$%

𝑥! − 𝑥)"	

= 𝑏" ⋅ 𝑆𝑆𝑋 = 𝑏 ⋅ 𝑆𝑆𝑋𝑌	

Also,	the	sum	of	squares	of	deviation	from	the	mean	of	the	observed	values	𝑦	is	expressed	as	
the	sum	of	the	sum	of	squares	𝑆𝑆𝑅	explained	by	the	regression	and	the	residual	sum	of	squares	
𝑆𝑆𝐸.	That	is,	

𝑆𝑆𝑌 =:(
#

!$%

𝑦! − 𝑦)"	

=:(
#

!$%

𝑦! − 𝑦C! + 𝑦C! − 𝑦)"	

=:(
#

!$%

𝑦! − 𝑦C!)" +:(
#

!$%

𝑦C! − 𝑦)"	

= 𝑆𝑆𝐸 + 𝑆𝑆𝑅	

∵ 2:(
#

!$%

𝑦! − 𝑦C!)(𝑦C! − 𝑦)	

= 2:(
#

!$%

𝑦! −𝑚 − 𝑏𝑥!)(𝑚 + 𝑏𝑥! − (𝑚 + 𝑏𝑥))	

= 2𝑏:(
#

!$%

𝑦! − (𝑦 − 𝑏𝑥) − 𝑏𝑥!)(𝑥! − 𝑥)	

= 2𝑏:(
#

!$%

𝑦! − 𝑦 − 𝑏(𝑥! − 𝑥))(𝑥! − 𝑥)	

= 2𝑏(𝑆𝑆𝑋𝑌 − 𝑏 ⋅ 𝑆𝑆𝑋) = 0	

Let’s	actually	calculate	it	using	the	above	equation.	First,	calculate	𝑆𝑆𝑅	and	𝑆𝑆𝐸.	

# calculate sum of squares of regression and error	
ssr <- b * ssxy	
ssr	

## [1] 26881.49	

ssy <- sum(y^2) - n * mean(y)^2	
sse <- ssy - ssr	
sse	

## [1] 133903.2	
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Next,	calculate	the	mean	squares,	which	is	of	the	sum	of	squares	divided	by	the	degrees	of	
freedom.	

# calculate mean squares of regression and error	
msr <- ssr / 1	
msr	

## [1] 26881.49	

mse <- sse / (n - 2)	
mse	

## [1] 360.9251	

Finally,	the	mean	square	of	the	regression	is	divided	by	the	mean	square	of	the	error	to	
calculate	the	𝐹	value.	Furthermore,	calculate	the	𝑝	value	corresponding	to	the	calculated	F	
value.	

# calculate F value	
f.value <- msr / mse	
f.value	

## [1] 74.47943	

# calculate p value for the F value	
1 - pf(f.value, 1, n - 2)	

## [1] 2.220446e-16	

The	results	obtained	are	in	agreement	with	the	results	calculated	earlier	using	the	function	
anova.	

The	results	of	regression	analysis	are	included	in	the	results	of	regression	analysis	displayed	
using	the	function	“summary”.	

# check the summary of the result of regression analysis         	
summary(model)	

## 	
## Call:	
## lm(formula = height ~ flower, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -43.846 -13.718   0.295  13.409  61.594 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 58.05464    6.92496   8.383 1.08e-15 ***	
## flower       0.67287    0.07797   8.630  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 19 on 371 degrees of freedom	
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1649 	
## F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16	

“Residual	standard	error”	is	the	square	root	of	the	mean	square	of	the	residual.	
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# square root of mse	
sqrt(mse)	

## [1] 18.99803	

“Multiple	R-squared”	(𝑅")	is	a	value	called	the	coefficient	of	determination,	which	is	the	ratio	
of	𝑆𝑆𝑅	to	𝑆𝑆𝑌.	

# R squared 	
ssr / ssy	

## [1] 0.1671894	

“Adjusted	R-squared”	(𝑅'()" )	is	a	value	called	the	adjusted	coefficient	of	determination,	which	
can	be	calculated	as	follows.	

# adjusted R squared	
(ssy / (n - 1) - mse) / (ssy / (n - 1))	

## [1] 0.1649446	

Also,	“F-statistic”	matches	the	𝐹	value	and	its	𝑝	value	which	are	expressed	as	the	effect	of	
flowering	time	in	the	analysis	of	variance.	In	addition,	the	t	value	calculated	for	the	regression	
coefficient	of	the	flowering	time	term	is	squared	to	obtain	the	𝐹	value	(8.6302	=	74.477).	

𝑅"	and	𝑅'()" 	can	also	be	expressed	using	𝑆𝑆𝑅,	𝑆𝑆𝑌,	and	𝑆𝑆𝐸	as	follows.	

𝑅" =
𝑆𝑆𝑅
𝑆𝑆𝑌 = 1 −

𝑆𝑆𝐸
𝑆𝑆𝑌	

𝑅'()" = 1 −
𝑛 − 1
𝑛 − 𝑝 ⋅

𝑆𝑆𝐸
𝑆𝑆𝑌	

Here,	𝑝	is	the	number	of	parameters	included	in	the	model,	and	𝑝 = 2	for	a	simple	regression	
model.	It	can	be	seen	that	𝑅'()" 	has	a	larger	amount	of	adjustment	(the	residual	sum	of	squares	
is	underestimated)	as	the	number	of	parameters	included	in	the	model	increases.	

Quiz 3 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

If	you	close	the	page	of	the	quiz,	go	to	https://www.menti.com/	and	type	in	the	number	I	will	
tell	you	in	the	lecture.	

Distribution that estimated value of regression coefficient follows 

As	mentioned	earlier,	the	estimates	𝑏	and	𝑚	of	the	regression	coefficients	𝜇	and	𝛽	are	values	
estimated	from	samples	and	are	random	variables	that	depend	on	the	samples	chosen	by	
chance.	Thus,	estimates	𝑏	and	𝑚	have	probabilistic	distributions.	Here	we	consider	the	
distributions	that	the	estimates	follow.	

The	estimate	𝑏	follows	the	normal	distribution:	

𝑏 ∼ 𝑁(𝛽,
𝜎"

𝑆𝑆𝑋)	

Here,	𝜎"	is	the	residual	variance	𝜎" = 𝑉𝑎𝑟(𝑦!) = 𝑉𝑎𝑟(𝑒!).	
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The	esimate	𝑚	follows	the	normal	distribution:	

𝑚 ∼ 𝑁(𝜇, 𝜎"[
1
𝑛 +

𝑥"

𝑆𝑆𝑋])	

Although	the	true	value	of	the	error	variance	𝜎"	is	unknown,	it	can	be	replaced	by	the	residual	
variance	𝑠".	That	is,	

𝑠" =
𝑆𝑆𝐸
𝑛 − 2	

This	value	is	the	mean	square	of	the	residuals	calculated	during	the	analysis	of	variance.	

At	this	time,	statistics	on	𝑏	

𝑡 =
𝑏 − 𝛽*
𝑠/√𝑆𝑆𝑋

	

follows	the	t	distribution	with	n	–	2	degrees	of	freedom	under	the	null	hypothesis:	

𝐻*: 𝛽 = 𝛽*	

First,	test	for	null	hypothesis	𝐻*: 𝛽 = 0	for	𝑏.	

# test beta = 0	
t.value <- (b - 0) / sqrt(mse/ssx)	
t.value	

## [1] 8.630147	

This	statistic	follows	the	t	distribution	with	371	degrees	of	freedom	under	the	null	hypothesis.	
Draw	a	graph	of	the	distribution	

# visualize the t distribution under H0	
s <- seq(-10, 10, 0.2)	
plot(s, dt(s, n - 2), type = "l")	
abline(v = t.value, col = "green")	
abline(v = - t.value, col = "gray")	
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From	the	distribution	that	follows	under	the	null	hypothesis,	the	value	of	𝑡	that	is	being	
obtained	appears	to	be	large.	Let’s	perform	a	𝑡	test.	Note	that	it	is	a	two-tailed	test.	

# perform t test	
2 * (1 - pt(abs(t.value), n - 2)) # two-sided test 	

## [1] 2.220446e-16	

The	results	of	this	test	were	already	displayed	as	regression	analysis	results.	

# check the summary of the model	
summary(model)	

## 	
## Call:	
## lm(formula = height ~ flower, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -43.846 -13.718   0.295  13.409  61.594 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 58.05464    6.92496   8.383 1.08e-15 ***	
## flower       0.67287    0.07797   8.630  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
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## 	
## Residual standard error: 19 on 371 degrees of freedom	
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1649 	
## F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16	

The	hypothesis	test	performed	above	can	be	performed	for	any	𝛽*.	For	example,	let’s	test	for	
null	hypothesis	𝐻*: 𝛽 = 0.5.	

# test beta = 0.5	
t.value <- (b - 0.5) / sqrt(mse/ssx)	
t.value	

## [1] 2.217253	

2 * (1 - pt(abs(t.value), n - 2))	

## [1] 0.02721132	

The	result	is	significant	at	the	5%	level.	

Now	let	us	test	for	𝑚.	First,	let’s	test	the	null	hypothesis	𝐻*:𝑚 = 0.	

# test mu = 0	
t.value <- (m  - 0) / sqrt(mse * (1/n + mean(x)^2 / ssx))	
t.value	

## [1] 8.383389	

2 * (1 - pt(abs(t.value), n - 2))	

## [1] 1.110223e-15	

This	result	was	also	already	calculated.	

# check the summary of the model again	
summary(model)	

## 	
## Call:	
## lm(formula = height ~ flower, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -43.846 -13.718   0.295  13.409  61.594 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 58.05464    6.92496   8.383 1.08e-15 ***	
## flower       0.67287    0.07797   8.630  < 2e-16 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 19 on 371 degrees of freedom	
## Multiple R-squared:  0.1672, Adjusted R-squared:  0.1649 	
## F-statistic: 74.48 on 1 and 371 DF,  p-value: < 2.2e-16	

(It	may	be	due	to	the	rounding	error	that	the	p	value	does	not	match	completely)	
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Finally,	let’s	test	for	the	null	hypothesis	𝐻*:𝑚 = 50.	

# test mu = 70	
t.value <- (m  - 70) / sqrt(mse * (1/n + mean(x)^2 / ssx))	
t.value	

## [1] -1.724971	

2 * (1 - pt(abs(t.value), n - 2))	

## [1] 0.08536545	

The	result	was	not	significant	even	at	the	5%	level.	

Draw	a	graph	of	the	distribution	unser	the	null	hypothesis.	

# visualize the t distribution under H0	
s <- seq(-5, 5, 0.1)	
plot(s, dt(s, n - 2), type = "l")	
abline(v = t.value, col = "green")	
abline(v = - t.value, col = "gray")	

	

Quiz 4 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

If	you	close	the	page	of	the	quiz,	go	to	https://www.menti.com/	and	type	in	the	number	I	will	
tell	you	in	the	lecture.	
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Confidence intervals for regression coefficients and fitted values 

Function	“predict”	has	various	functions.	First,	let’s	use	the	function	with	the	estimated	
regression	model.	Then,	the	values	of	y	when	the	model	fitted	to	observed	data	are	calculated.	
The	values	𝑦C	are	exactly	the	same	as	calculated	by	the	function	“fitted”.	

# fitted values	
pred <- predict(model)	
head(pred)	

##        1        2        3        4        5        6 	
## 108.5763 118.2769 121.6413 116.9312 117.9966 128.7065	

head(fitted(model))	

##        1        2        3        4        5        6 	
## 108.5763 118.2769 121.6413 116.9312 117.9966 128.7065	

By	setting	the	options	“interval”	and	“level”,	you	can	calculate	the	confidence	interval	(the	95	
confidence	interval	at	the	default	setting)	of	y	at	the	specified	significance	level	when	fitting	
the	model.	

# calculate confidence interval	
pred <- predict(model, interval = "confidence", level = 0.95)	
head(pred)	

##        fit      lwr      upr	
## 1 108.5763 105.8171 111.3355	
## 2 118.2769 116.3275 120.2264	
## 3 121.6413 119.4596 123.8230	
## 4 116.9312 114.9958 118.8665	
## 5 117.9966 116.0540 119.9391	
## 6 128.7065 125.4506 131.9623	

Let’s	vidualize	the	95%	confidence	interval	of	y	using	the	function	“predict”.	

# draw confidence bands	
pred <- data.frame(flower = 50:160)	
pc <- predict(model, interval = "confidence", newdata = pred)	
plot(data$height ~ data$flower)	
matlines(pred$flower, pc, lty = c(1, 2, 2), col = "red")	
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Next,	we	will	consider	the	case	of	predicting	unknown	data.	Let	us	use	the	predict	function	to	
draw	the	95%	confidence	interval	of	the	predicted	value,	i.e.,	the	value	of	𝑦	that	would	be	
observed	for	the	unknown	data,	i.e.,	the	predicted	value	𝑦V,	is	subject	to	additional	variation	due	
to	error.	

pc <- predict(model, interval= "prediction", newdata = pred)	
plot(data$height ~ data$flower)	
matlines(pred$flower, pc, lty = c(1, 2, 2), col = "green")	
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With	the	added	error,	the	variability	of	the	predicted	𝑦V	is	greater	than	the	estimated	𝑦C.	

Note	that	for	a	particular	𝑥,	the	confidence	intervals	for	the	estimated	y,	i.e.,	𝑦C,	and	the	
predicted	y,	i.e.,	𝑦V,	can	be	found	as	follows.	Here,	we	find	the	99%	confidence	interval	when	𝑥 =
120.	

# estimate the confidence intervals for the estimate and prediction of y 	
pred <- data.frame(flower = 120)	
predict(model, interval = "confidence", newdata = pred, level = 0.99)	

##        fit      lwr      upr	
## 1 138.7996 131.8403 145.7589	

predict(model, interval = "prediction", newdata = pred, level = 0.99)	

##        fit      lwr      upr	
## 1 138.7996 89.12106 188.4781	

Quiz 5 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

If	you	close	the	page	of	the	quiz,	go	to	https://www.menti.com/	and	type	in	the	number	I	will	
tell	you	in	the	lecture.	
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Polynomial regression model and multiple regression model 

So	far,	we	have	applied	to	the	data	a	regression	model	that	represents	the	relationship	
between	the	two	variables	with	a	straight	line.	Let’s	extend	the	regression	model	a	bit.	

First,	let’s	perform	regression	by	a	method	called	polynomial	regression.	In	polynomial	
regression,	

𝑦! = 𝜇 + 𝛽%𝑥! + 𝛽"𝑥!" +⋯+ 𝛽+𝑥!
+ + 𝜖! 	

In	this	way,	regression	is	performed	using	the	second	or	higher	order	terms	of	𝑥.	First,	let’s	
perform	regression	using	the	first	and	second	terms	of	𝑥.	

# polynomial regression	
model.quad <- lm(height ~ flower + I(flower^2), data = data)	
summary(model.quad)	

## 	
## Call:	
## lm(formula = height ~ flower + I(flower^2), data = data)	
## 	
## Residuals:	
##    Min     1Q Median     3Q    Max 	
## -39.57 -13.60   0.97  12.91  64.83 	
## 	
## Coefficients:	
##               Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) -29.082326  27.019440  -1.076 0.282473    	
## flower        2.662663   0.601878   4.424 1.28e-05 ***	
## I(flower^2)  -0.011130   0.003339  -3.333 0.000945 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 18.74 on 370 degrees of freedom	
## Multiple R-squared:  0.1915, Adjusted R-squared:  0.1871 	
## F-statistic: 43.81 on 2 and 370 DF,  p-value: < 2.2e-16	

It	can	be	seen	that	the	proportion	of	variation	of	𝑦(coefficient	of	determination	𝑅")	explained	
by	the	polynomial	regression	model	is	larger	than	that	of	the	simple	regression	model.	

Although	this	will	be	mentioned	later,	you	should	not	judge	that	the	polynomial	regression	
model	is	excellent	only	with	this	value.	This	is	because	a	polynomial	regression	model	has	
more	parameters	than	a	simple	regression	model,	and	you	have	more	flexibility	when	fitting	
the	model	to	data.	It	is	easy	to	improve	the	fit	of	the	model	to	the	data	by	increasing	the	
flexibility.	In	extreme	cases,	the	model	can	be	completely	fitted	to	the	data	with	as	many	
parameters	as	the	size	of	data	(In	that	case,	the	coefficient	pf	determination	R^2	completely	
matches	1).	Therefore,	careful	selection	of	some	statistical	criteria	is	required	when	selecting	
the	best	model.	This	will	be	discussed	later.	

# plot(data$height ~ data$flower)	
pred <- data.frame(flower = 50:160)	
pc <- predict(model.quad, interval = "confidence", newdata = pred)	
plot(data$height ~ data$flower)	
matlines(pred$flower, pc, lty = c(1, 2, 2), col = "red")	
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When	the	timing	of	flowering	is	over	120	days	after	sowing,	it	can	be	seen	that	the	reliability	of	
the	model	is	low.	

Now	let’s	draw	the	result	of	polynomial	regression	with	confidence	intervals.	

# compare predicted and observed values	
lim <- range(c(data$height, fitted(model), fitted(model.quad)))	
plot(data$height, fitted(model), 	
        xlab = "Observed", ylab = "Expected",	
        xlim = lim, ylim = lim)	
points(data$height, fitted(model.quad), col = "red")	
abline(0, 1)	
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The	above	figure	represents	relationship	between	fitted	value	and	observed	value	of	the	
simple	regression	model	(black)	and	the	second-order	polynomial	model	(red).	

Let’s	test	if	the	improvement	in	the	explanatory	power	of	the	second-order	polynomial	model	
is	statistically	significant.	The	significance	is	tested	with	𝐹	test	whether	the	difference	between	
the	residual	sum	of	squares	of	the	two	models	is	sufficiently	large	compared	to	the	residual	
sum	of	squares	of	the	model	containing	the	other	(here,	Model	2	contains	Model	1).	

# compare error variance between two models	
anova(model, model.quad)	

## Analysis of Variance Table	
## 	
## Model 1: height ~ flower	
## Model 2: height ~ flower + I(flower^2)	
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    	
## 1    371 133903                                  	
## 2    370 129999  1    3903.8 11.111 0.0009449 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

The	results	show	that	the	difference	in	residual	variance	between	the	two	models	is	highly	
significant	(𝑝 < 0.001).	In	other	words,	Model	2	has	significantly	more	explanatory	power	than	
Model	1.	

Now	let’s	fit	a	third-order	polynomial	regression	model	and	test	if	it	is	significantly	more	
descriptive	than	a	second-order	model.	
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# extend polynormial regression model to a higher dimensional one...	
model.cube <- lm(height ~ flower + I(flower^2) + I(flower^3), data = data)	
summary(model.cube)	

## 	
## Call:	
## lm(formula = height ~ flower + I(flower^2) + I(flower^3), data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -39.699 -13.705   1.031  13.240  65.840 	
## 	
## Coefficients:	
##               Estimate Std. Error t value Pr(>|t|)  	
## (Intercept) -1.001e+02  8.541e+01  -1.172   0.2419  	
## flower       5.029e+00  2.765e+00   1.818   0.0698 .	
## I(flower^2) -3.664e-02  2.929e-02  -1.251   0.2118  	
## I(flower^3)  8.898e-05  1.015e-04   0.877   0.3813  	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 18.75 on 369 degrees of freedom	
## Multiple R-squared:  0.1931, Adjusted R-squared:  0.1866 	
## F-statistic: 29.44 on 3 and 369 DF,  p-value: < 2.2e-16	

# compare error variance between two models	
anova(model.quad, model.cube)	

## Analysis of Variance Table	
## 	
## Model 1: height ~ flower + I(flower^2)	
## Model 2: height ~ flower + I(flower^2) + I(flower^3)	
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)	
## 1    370 129999                           	
## 2    369 129729  1    270.17 0.7685 0.3813	

The	3rd-order	model	has	a	slightly	better	explanatory	power	than	the	2nd-order	model.	
However,	the	difference	is	not	statistically	significant.	In	other	words,	it	turns	out	that	
extending	a	second-order	model	to	a	third-order	model	is	not	a	good	idea.	

Finally,	let’s	apply	the	multiple	linear	regression	model:	

𝑦! = 𝜇 + 𝛽%𝑥%! + 𝛽"𝑥"! +⋯+ 𝛽+𝑥+! + 𝜖! 	

In	this	way,	regression	is	performed	using	multiple	explanatory	variables	(𝑥%! , 𝑥"! , . . . , 𝑥+!).	In	
the	first	lecture,	I	confirmed	in	the	graph	that	the	height	varies	depending	on	the	difference	in	
genetic	background.	Here,	we	will	create	a	multiple	regression	model	that	explains	plant	
height	using	genetic	backgrounds	(PC1	to	PC4)	expressed	as	the	scores	of	four	principal	
components.	

# multi-linear regression with genetic background 	
model.wgb <- lm(height ~ PC1 + PC2 + PC3 + PC4, data = data)	
summary(model.wgb)	

## 	
## Call:	
## lm(formula = height ~ PC1 + PC2 + PC3 + PC4, data = data)	
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## 	
## Residuals:	
##    Min     1Q Median     3Q    Max 	
## -45.89 -11.65   0.15  11.05  72.12 	
## 	
## Coefficients:	
##             Estimate Std. Error t value Pr(>|t|)    	
## (Intercept) 117.2608     0.8811 133.080  < 2e-16 ***	
## PC1         181.6572    18.2977   9.928  < 2e-16 ***	
## PC2          83.5334    17.9920   4.643 4.79e-06 ***	
## PC3         -88.6432    18.1473  -4.885 1.55e-06 ***	
## PC4         122.1351    18.2476   6.693 8.16e-11 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 17 on 368 degrees of freedom	
## Multiple R-squared:  0.3388, Adjusted R-squared:  0.3316 	
## F-statistic: 47.14 on 4 and 368 DF,  p-value: < 2.2e-16	

anova(model.wgb)	

## Analysis of Variance Table	
## 	
## Response: height	
##            Df Sum Sq Mean Sq F value    Pr(>F)    	
## PC1         1  28881 28881.3  99.971 < 2.2e-16 ***	
## PC2         1   5924  5924.2  20.506 8.040e-06 ***	
## PC3         1   6723  6723.2  23.272 2.063e-06 ***	
## PC4         1  12942 12942.3  44.799 8.163e-11 ***	
## Residuals 368 106314   288.9                      	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

You	can	see	that	the	coefficient	of	determination	of	the	regression	model	is	higher	than	that	of	
the	polynomial	regression	model.	The	results	of	analysis	of	variance	show	that	all	principal	
components	are	significant	and	need	to	be	included	in	the	regression.	

Finally,	let’s	combine	the	polynomial	regression	model	with	the	multiple	regression	model.	

# multi-linear regression with all information	
model.all <- lm(height ~ flower + I(flower^2) + PC1 + PC2 + PC3 + PC4, data =
 data)	
summary(model.all)	

## 	
## Call:	
## lm(formula = height ~ flower + I(flower^2) + PC1 + PC2 + PC3 + 	
##     PC4, data = data)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -37.589 -10.431   0.542  10.326  65.390 	
## 	
## Coefficients:	
##               Estimate Std. Error t value Pr(>|t|)    	
## (Intercept)  25.739160  24.725955   1.041  0.29857    	
## flower        1.633185   0.543172   3.007  0.00282 ** 	
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## I(flower^2)  -0.006598   0.002974  -2.219  0.02713 *  	
## PC1         141.214491  18.547296   7.614 2.29e-13 ***	
## PC2          83.552448  17.231568   4.849 1.84e-06 ***	
## PC3         -45.310663  18.647979  -2.430  0.01559 *  	
## PC4         119.638954  17.369423   6.888 2.48e-11 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 16.17 on 366 degrees of freedom	
## Multiple R-squared:  0.4045, Adjusted R-squared:  0.3947 	
## F-statistic: 41.43 on 6 and 366 DF,  p-value: < 2.2e-16	

# compare error variance	
anova(model.all, model.wgb)	

## Analysis of Variance Table	
## 	
## Model 1: height ~ flower + I(flower^2) + PC1 + PC2 + PC3 + PC4	
## Model 2: height ~ PC1 + PC2 + PC3 + PC4	
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)    	
## 1    366  95753                                 	
## 2    368 106314 -2    -10561 20.184 4.84e-09 ***	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

The	effect	of	the	genetic	background	on	plant	height	is	very	large,	but	it	can	also	be	seen	that	
the	model’s	explanatory	power	improves	if	the	effect	of	flowering	timing	is	also	added.	

Lastly,	let’s	compare	the	first	regression	model	and	the	last	created	multiple	regression	model	
by	plotting	the	scatter	of	the	observed	value	and	the	fitted	value.	

# compare between the simplest and final models	
lim <- range(data$height, fitted(model), fitted(model.all))	
plot(data$height, fitted(model), xlab = "Observed", ylab = "Fitted", xlim = l
im, ylim = lim)	
points(data$height, fitted(model.all), col = "red")	
abline(0,1)	
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As	a	result,	we	can	see	that	the	explanatory	power	of	the	model	is	significantly	improved	by	
considering	the	genetic	background	and	the	second	order	terms.	However,	on	the	other	hand,	
it	can	also	be	seen	that	the	two	varieties	and	lines	whose	flowering	timing	is	late	(after	180	
days)	can	not	be	sufficiently	explained	even	by	the	finally	obtained	model.	There	may	be	room	
to	improve	the	model,	such	as	adding	new	factors	as	independent	variables.	

Quiz 6 

Now,	let’s	solve	a	practice	question	here.	Practice	questions	will	be	presented	in	the	lecture.	

If	you	close	the	page	of	the	quiz,	go	to	https://www.menti.com/	and	type	in	the	number	I	will	
tell	you	in	the	lecture.	

Experimental design and analysis of variance 

When	trying	to	draw	conclusions	based	on	experimental	results,	it	is	always	the	presence	of	
errors	in	the	observed	values.	Errors	are	inevitable	no	matter	how	precise	the	experiment	is,	
especially	in	field	experiments,	errors	are	caused	by	small	environmental	variations	in	the	field.	
Therefore,	experimental	design	is	a	method	devised	to	obtain	objective	conclusions	without	
being	affected	by	errors.	

First	of	all,	what	is	most	important	in	planning	experiments	is	the	Fisher’s	three	principles:	

1. Replication:	In	order	to	be	able	to	perform	statistical	tests	on	experimental	results,	we	
repeat	the	same	process.	For	example,	evaluate	one	variety	multiple	times.	The	
experimental	unit	equivalent	to	one	replication	is	called	a	plot.	
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2. Randomization:	An	operation	that	makes	the	effect	of	errors	random	is	called	
randomization.	For	example,	in	the	field	test	example,	varieties	are	randomly	assigned	to	
plots	in	the	field	using	dice	or	random	numbers.	

3. Local	control:	Local	control	means	dividing	the	field	into	blocks	and	managing	the	
environmental	conditions	in	each	block	to	be	as	homogeneous	as	possible.	In	the	example	
of	the	field	test,	the	grouped	area	of	the	field	is	divided	into	small	units	called	blocks	to	
make	the	cultivation	environment	in	the	block	as	homogeneous	as	possible.	It	is	easier	to	
homogenize	each	block	rather	than	homogenizing	the	cultivation	environment	of	the	
whole	field.	

The	experimental	method	of	dividing	the	field	into	several	blocks	and	making	the	cultivation	
environment	as	homogeneous	as	possible	in	the	blocks	is	called	the	randomized	block	design.	
In	the	randomized	block	design,	the	field	is	divided	into	blocks,	and	varieties	are	randomly	
assigned	within	each	block.	The	number	of	blocks	is	equal	to	the	number	of	replications.	

Next,	I	will	explain	the	method	of	statistical	test	in	the	randomized	block	design	through	a	
simple	simulation.	First,	let’s	set	the	“seed”	of	the	random	number	before	starting	the	
simulation.	A	random	seed	is	a	source	value	for	generating	pseudorandom	numbers.	

# set a seed for random number generation	
set.seed(12)	

Let’s	start	the	simulation.	Here,	consider	a	field	where	16	plots	are	arranged	in	4	×	4.	And	think	
about	the	situation	that	there	is	a	slope	of	the	soil	fertility	in	the	field.	

# The blocks have unequal fertility among them	
field.cond <- matrix(rep(c(4,2,-2,-4), each = 4), nrow = 4)	
field.cond	

##      [,1] [,2] [,3] [,4]	
## [1,]    4    2   -2   -4	
## [2,]    4    2   -2   -4	
## [3,]    4    2   -2   -4	
## [4,]    4    2   -2   -4	

However,	it	is	assumed	that	there	is	an	effect	of	+4	where	the	soil	fertility	is	high	and	-4	where	
it	is	low.	

Here,	we	arrange	blocks	according	to	Fisher’s	three	principles.	The	blocks	are	arranged	to	
reflect	the	difference	in	the	soil	fertility	well.	

# set block to consider the heterogeneity of field condition	
block <- c("I", "II", "III", "IV")	
blomat <- matrix(rep(block, each = 4), nrow = 4)	
blomat	

##      [,1] [,2] [,3]  [,4]	
## [1,] "I"  "II" "III" "IV"	
## [2,] "I"  "II" "III" "IV"	
## [3,] "I"  "II" "III" "IV"	
## [4,] "I"  "II" "III" "IV"	

Next,	randomly	arrange	varieties	in	each	block	according	to	Fisher’s	three	principles.	Let’s	
prepare	for	that	first.	

# assume that there are four varieties	
variety <- c("A", "B", "C", "D")	
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# sample the order of the four varieties randomly	
sample(variety)	

## [1] "B" "D" "C" "A"	

sample(variety)	

## [1] "C" "B" "A" "D"	

Let’s	allocate	varieties	randomly	to	each	block.	

# allocate the varieties randomly to each column of the field	
varmat <- matrix(c(sample(variety), sample(variety), 	
            sample(variety), sample(variety)), nrow = 4)	
varmat	

##      [,1] [,2] [,3] [,4]	
## [1,] "D"  "B"  "B"  "D" 	
## [2,] "B"  "A"  "D"  "A" 	
## [3,] "C"  "D"  "C"  "B" 	
## [4,] "A"  "C"  "A"  "C"	

Consider	the	differences	in	genetic	values	of	the	four	varieties.	Let	the	genetic	values	of	the	A	
to	D	varieties	be	+4,	+2,	-2,	-4,	respectively.	

# simulate genetic ability of the varieties	
g.value <- matrix(NA, 4, 4)	
g.value[varmat == "A"] <- 4	
g.value[varmat == "B"] <- 2	
g.value[varmat == "C"] <- -2	
g.value[varmat == "D"] <- -4	
g.value	

##      [,1] [,2] [,3] [,4]	
## [1,]   -4    2    2   -4	
## [2,]    2    4   -4    4	
## [3,]   -2   -4   -2    2	
## [4,]    4   -2    4   -2	

Environmental	variations	are	generated	as	random	numbers	from	a	normal	distribution	with	
an	average	of	0	and	a	standard	deviation	of	2.5.	

# simulate error variance (variation due to the heterogeneity of local enviro
nment)	
e.value <- matrix(rnorm(16, sd = 2.5), 4, 4)	
e.value	

##           [,1]      [,2]       [,3]       [,4]	
## [1,] -1.547611  2.232424  0.1911757  1.8861892	
## [2,] -2.207789  3.909922 -2.1251164 -0.8860432	
## [3,]  1.098536  2.524477 -3.2760349 -1.1552031	
## [4,]  3.110199 -0.690938 -4.2153578  4.7493152	

Although	the	above	command	generates	random	numbers,	I	think	you	will	get	the	same	value	
as	the	textbook.	This	is	because	the	random	numbers	generated	are	pseudo	random	numbers	
and	are	generated	according	to	certain	rules.	Note	that	if	you	change	the	value	of	the	random	
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seed,	the	same	value	as	above	will	not	be	generated.	Also,	different	random	numbers	are	
generated	each	time	you	run.	

Finally,	the	overall	average,	the	gradient	of	soil	fertility,	the	genetic	values	of	varieties,	and	the	
variation	due	to	the	local	environment	are	added	together	to	generate	a	simulated	observed	
value	of	the	trait.	

# simulate phenotypic values	
grand.mean <- 50	
simyield <- grand.mean + field.cond + g.value + e.value	
simyield	

##          [,1]     [,2]     [,3]     [,4]	
## [1,] 48.45239 56.23242 50.19118 43.88619	
## [2,] 53.79221 59.90992 41.87488 49.11396	
## [3,] 53.09854 50.52448 42.72397 46.84480	
## [4,] 61.11020 49.30906 47.78464 48.74932	

Before	performing	analysis	of	variance,	reshape	data	in	the	form	of	matrices	into	vectors	and	
rebundle	them.	

# unfold a matrix to a vector	
as.vector(simyield)	

##  [1] 48.45239 53.79221 53.09854 61.11020 56.23242 59.90992 50.52448 49.309
06	
##  [9] 50.19118 41.87488 42.72397 47.78464 43.88619 49.11396 46.84480 48.749
32	

as.vector(varmat)	

##  [1] "D" "B" "C" "A" "B" "A" "D" "C" "B" "D" "C" "A" "D" "A" "B" "C"	

as.vector(blomat)	

##  [1] "I"   "I"   "I"   "I"   "II"  "II"  "II"  "II"  "III" "III" "III" "II
I"	
## [13] "IV"  "IV"  "IV"  "IV"	

Below,	the	data	is	bundled	as	a	data	frame.	

# create a dataframe for the analysis of variance	
simdata <- data.frame(variety = as.vector(varmat), block = as.vector(blomat),
 yield = as.vector(simyield))	
head(simdata, 10)	

##    variety block    yield	
## 1        D     I 48.45239	
## 2        B     I 53.79221	
## 3        C     I 53.09854	
## 4        A     I 61.11020	
## 5        B    II 56.23242	
## 6        A    II 59.90992	
## 7        D    II 50.52448	
## 8        C    II 49.30906	
## 9        B   III 50.19118	
## 10       D   III 41.87488	
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Let’s	plot	the	created	data	using	the	function	interaction.plot.	

# draw interaction plot	
interaction.plot(simdata$block, simdata$variety, simdata$yield)	

	

It	can	be	seen	that	the	difference	between	blocks	is	as	large	as	the	difference	between	varieties	

Let’s	perform	an	analysis	of	variance	using	the	prepared	data.	

# perform the analysis of variance (ANOVA) with simulated data	
res <- aov(yield ~ block + variety, data = simdata)	
summary(res)	

##             Df Sum Sq Mean Sq F value  Pr(>F)   	
## block        3 239.11   79.70  11.614 0.00190 **	
## variety      3 159.52   53.17   7.748 0.00728 **	
## Residuals    9  61.77    6.86                   	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

It	can	be	seen	that	both	the	block	and	variety	effects	are	highly	significant.	Note	that	the	
former	is	not	the	subject	of	verification,	and	is	incorporated	into	the	model	in	order	to	estimate	
the	variety	effect	correctly.	

The	analysis	of	variance	described	above	can	also	be	performed	using	the	function	“lm”	for	
estimating	regression	models.	
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# perform ANOVA with a linear model	
res <- lm(yield ~ block + variety, data = simdata)	
anova(res)	

## Analysis of Variance Table	
## 	
## Response: yield	
##           Df  Sum Sq Mean Sq F value   Pr(>F)   	
## block      3 239.109  79.703 11.6138 0.001898 **	
## variety    3 159.518  53.173  7.7479 0.007285 **	
## Residuals  9  61.765   6.863                    	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

Complete random block design and completely randomized design 

The	local	control,	one	of	Fisher’s	three	principles,	is	very	important	for	performing	highly	
accurate	experiments	in	fields	under	high	heterogeneity	between	plots.	Here,	assuming	the	
same	environmental	conditions	as	before,	let’s	consider	performing	an	experiment	without	
setting	up	a	block.	

In	the	previous	simulation	experiment,	we	blocked	each	column	and	placed	A,	B,	C,	D	randomly	
in	that	block.	Here	we	will	assign	the	plots	with	4	varieties	x	4	replicates	completely	randomly	
across	the	field.	An	experiment	in	which	blocks	are	not	arranged	in	the	expliment	and	
arranged	completely	randomly	is	called	“completely	randomized	design.”	

# completely randomized the plots of each variety in a field	
varmat.crd <- matrix(sample(varmat), nrow = 4)	
varmat.crd	

##      [,1] [,2] [,3] [,4]	
## [1,] "A"  "C"  "C"  "D" 	
## [2,] "B"  "A"  "B"  "D" 	
## [3,] "A"  "C"  "B"  "A" 	
## [4,] "D"  "B"  "C"  "D"	

This	time,	you	should	careful	that	the	frequency	of	appearance	of	variety	varies	from	row	to	
row,	since	varieties	are	randomly	assigned	to	the	entire	field.	

The	genetic	effect	is	assigned	according	to	the	order	of	varieties	in	a	completely	random	
arrangement.	

# simulate genetic ability of the varieties	
g.value.crd <- matrix(NA, 4, 4)	
g.value.crd[varmat.crd == "A"] <- 4	
g.value.crd[varmat.crd == "B"] <- 2	
g.value.crd[varmat.crd == "C"] <- -2	
g.value.crd[varmat.crd == "D"] <- -4	
g.value.crd	

##      [,1] [,2] [,3] [,4]	
## [1,]    4   -2   -2   -4	
## [2,]    2    4    2   -4	
## [3,]    4   -2    2    4	
## [4,]   -4    2   -2   -4	
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As	in	the	previous	simulation	experiment,	the	overall	average,	the	gradient	of	soil	fertility,	the	
genetic	effect	of	varieties,	and	the	variation	due	to	the	local	environment	are	summed	up.	

# simulate phenotypic values	
simyield.crd <- grand.mean + g.value.crd + field.cond + e.value	
simyield.crd	

##          [,1]     [,2]     [,3]     [,4]	
## [1,] 56.45239 52.23242 46.19118 43.88619	
## [2,] 53.79221 59.90992 47.87488 41.11396	
## [3,] 59.09854 52.52448 46.72397 48.84480	
## [4,] 53.11020 53.30906 41.78464 46.74932	

The	data	is	bundled	as	a	data	frame.	

# create a dataframe for the analysis of variance	
simdata.crd <- data.frame(variety = as.vector(varmat.crd), 	
                            yield = as.vector(simyield.crd))	
head(simdata.crd, 10)	

##    variety    yield	
## 1        A 56.45239	
## 2        B 53.79221	
## 3        A 59.09854	
## 4        D 53.11020	
## 5        C 52.23242	
## 6        A 59.90992	
## 7        C 52.52448	
## 8        B 53.30906	
## 9        C 46.19118	
## 10       B 47.87488	

Now	let’s	perform	analysis	of	variance	on	the	data	generated	in	the	simulation.	Unlike	the	
previous	experiment,	we	do	not	set	blocks.	Thus,	we	perform	regression	analysis	with	the	
model	that	only	includes	the	varietal	effect	and	does	not	include	the	block	effect.	

# perform ANOVA	
res <- lm(yield ~ variety, data = simdata.crd)	
anova(res)	

## Analysis of Variance Table	
## 	
## Response: yield	
##           Df Sum Sq Mean Sq F value  Pr(>F)  	
## variety    3 218.12  72.705  3.1663 0.06392 .	
## Residuals 12 275.55  22.962                  	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

In	the	above	example,	the	varietal	effect	is	not	significant.	This	is	considered	to	be	due	to	the	
fact	that	the	spatial	heterogeneity	in	the	field	causes	the	error	to	be	large	and	the	genetic	
difference	between	varieties	cannot	be	estimated	with	sufficient	accuracy.	

The	above	simulation	experiment	was	repeated	100	times	(shown	on	the	next	page).	As	a	
result,	in	the	experiment	using	the	random	complete	block	design,	the	varietal	effect	was	
detected	(the	significance	level	was	set	to	5%)	in	94	experiments	out	of	100,	but	it	was	
detected	only	66	times	in	the	completely	random	arrangement.	In	addition,	when	the	
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significance	level	was	set	to	1%,	the	number	of	the	varietal	effect	detected	was	70	and	30,	
respectively	(in	the	case	of	completely	random	arrangement,	the	varietal	effect	was	missed	70	
times!).	From	this	result,	it	can	be	seen	that	the	adoption	of	the	random	complete	block	design	
is	effective	when	there	is	among-replication	heterogeneity	such	as	the	slope	of	soil	fertility.	In	
order	to	make	a	time-consuming	and	labor-intensive	experiment	as	efficient	as	possible,	it	is	
important	to	design	the	experiment	properly.	

# perform multiple simulations	
n.rep <- 100	
p.rbd <- rep(NA, n.rep)	
p.crd <- rep(NA, n.rep)	
for(i in 1:n.rep) {	
    # experiment with randomized block design	
    varmat <- matrix(c(sample(variety), sample(variety), 	
            sample(variety), sample(variety)), nrow = 4)	
    g.value <- matrix(NA, 4, 4)	
    g.value[varmat == "A"] <- 4	
    g.value[varmat == "B"] <- 2	
    g.value[varmat == "C"] <- -2	
    g.value[varmat == "D"] <- -4	
    e.value <- matrix(rnorm(16, sd = 2.5), 4, 4)	
    simyield <- grand.mean + field.cond + g.value + e.value	
    simdata <- data.frame(variety = as.vector(varmat), 	
            block = as.vector(blomat), yield = as.vector(simyield))	
    res <- lm(yield ~ block + variety, data = simdata)	
    p.rbd[i] <- anova(res)$Pr[2]	
    	
    # experiment with completed randomized design	
    varmat.crd <- matrix(sample(varmat), nrow = 4)	
    g.value.crd <- matrix(NA, 4, 4)	
    g.value.crd[varmat.crd == "A"] <- 4	
    g.value.crd[varmat.crd == "B"] <- 2	
    g.value.crd[varmat.crd == "C"] <- -2	
    g.value.crd[varmat.crd == "D"] <- -4	
    simyield.crd <- grand.mean + g.value.crd + field.cond + e.value	
    simdata.crd <- data.frame(variety = as.vector(varmat.crd), 	
                            yield = as.vector(simyield.crd))	
    res <- lm(yield ~ variety, data = simdata.crd)	
    p.crd[i] <- anova(res)$Pr[1]	
}	
sum(p.rbd < 0.05) / n.rep	

## [1] 0.94	

sum(p.crd < 0.05) / n.rep	

## [1] 0.54	

sum(p.rbd < 0.01) / n.rep	

## [1] 0.74	

sum(p.crd < 0.01) / n.rep	

## [1] 0.21	
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Report assignment 
1. Using	the	number	of	seeds	per	panicle	(Seed.number.per.panicle)	as	the	dependent	

variable	𝑦	and	panicle	length	(Panicle.length)	as	the	independent	variable	𝑥,	fit	a	simple	
regression	model	(𝑦! = 𝜇 + 𝛽𝑥! + 𝜖!)	and	find	the	sample	intercept	𝑚	and	sample	
regression	coefficient	𝑏,	which	are	estimates	of	𝜇	and	𝛽.	

2. Test	the	null	hypothesis	𝐻*: 𝑏 = 0.02.	
3. Test	the	null	hypothesis	𝐻*:𝑚 = 5.	
4. Answer	the	95%	confidence	interval	between	the	estimated	y,	i.e.,	𝑦C	and	the	predicted	y,	

i.e.,	𝑦V	for	𝑥 = 27.	
5. Fit	the	polynomial	regression	model	𝑦! = 𝜇 + 𝛽%𝑥! + 𝛽"𝑥!" + 𝜖!)	using	the	first-	and	

second-order	terms	of	𝑥	and	answer	the	determination	coefficient	𝑅"	and	the	adjusted	
coefficient	of	determination	𝑅'()" .	

6. Compare	the	regression	model	in	5	with	the	regression	model	in	1	in	an	analysis	of	
variance	and	consider	the	validity	of	including	a	second-order	term	of	𝑥	in	the	regression	
model.	

7. Fit	the	polynomial	regression	model	𝑦! = 𝜇 + 𝛽%𝑥! + 𝛽"𝑥!" + 𝛽,𝑥!, + 𝜖!)	using	the	first-	to	
third-order	terms	of	𝑥	and	answer	the	decision	coefficient	𝑅"	and	the	he	adjusted	
coefficient	of	determination	𝑅'()" .	

8. Compare	the	regression	model	in	7	with	the	regression	model	in	5	in	an	analysis	of	
variance	to	examine	the	validity	of	extending	the	second-order	polynomial	regression	
model	to	a	third-order	polynomial	regression	model.	
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