
	

	

1	

1	

Introduction to Biostatistics The 3rd Lecture 

Hiroyosh	IWATA	hiroiwata@g.ecc.u-tokyo.ac.jp	

2020/5/1	

Principal component analysis 

Experiments	in	agriculture	and	life	sciences	often	measure	multiple	characteristics	of	the	same	
samples.	For	example,	in	field	trials	of	crops,	various	traits	related	to	yield	are	examined	
simultaneously,	even	for	the	purpose	of	yield	assessment.	It	is	often	the	case	that	you	can	
discover	some	kind	of	knowledge	by	drawing	and	viewing	scatter	plots	of	the	multiple	
characteristics	measured	simultaneously.	However,	if	the	number	of	characteristics	measured	
is	large,	it	will	be	difficult	to	grasp	the	variation	of	data	with	a	scatter	plot.	The	number	of	
dimensions	that	humans	can	intuitively	grasp	using	the	scatter	plot	is	at	most	several	
dimensions,	and	it	is	not	easy	to	grasp	the	variation	of	data	when	there	are	more	than	10	
measured	characteristics.	Principal	component	analysis	described	in	this	lecture	is	a	method	
for	summarizing	variation	contained	in	multidimensional	data	into	low-dimensional	features	
(i.e.,	principal	component	scores)	without	reducing	the	amount	of	information	as	much	as	
possible.	For	example,	the	variation	summary	included	in	the	marker	genotype	data	shown	as	
an	example	in	this	lecture	shows	that	data	in	1,311	dimensions	can	be	summarized	in	four	
dimensions.	Principal	component	analysis	is	a	very	effective	method	to	efficiently	extract	the	
information	contained	in	variables	when	the	number	of	variables	is	large.	

In	this	lecture,	we	will	use	the	rice	dataset	(Zhao	et	al.	2011)	as	an	example.	In	this	lecture,	we	
will	also	use	marker	genotype	data	(RiceDiversityGeno.csv)	as	well	as	line	(accession)	data	
(RiceDiversityLine.csv)	and	phenotypic	data	(RiceDiversityPheno.csv).	The	marker	genotype	
data	is	the	genotypes	of	1,311	SNPs	that	Zhao	et	al.	(2010,	PLoS	One	5:	e10780)	used	in	their	
analysis.	All	data	are	based	on	the	data	downloaded	from	the	Rice	Diversity	web	page	
http://www.ricediversity.org/data/index.cfm.	As	for	marker	data,	missing	value	was	imputed	
by	using	the	software	fastPHASE	(Scheet	and	Stephens	2006).	

Load	three	types	of	data	and	combine	them.	

# this data set was analyzed in Zhao 2011 (Nature Communications 2:467)	
line <- read.csv("RiceDiversityLine.csv")	
pheno <- read.csv("RiceDiversityPheno.csv")	
geno <- read.csv("RiceDiversityGeno.csv")	
line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID")	
alldata <- merge(line.pheno, geno, by.x = "NSFTV.ID", by.y = "NSFTVID")	

Analyze	the	variation	of	panicle	length	and	flag	leaf	length	in	varieties	and	lines	included	in	
rice	germplasm	by	principal	component	analysis.	First,	the	data	of	both	traits	are	extracted	
from	all	data	(alldata).	Then,	samples	which	have	at	least	one	missing	value	among	the	data	of	
both	traits	are	excluded.	

# extract panicle length and flag leaf length	
mydata <- data.frame(	
    panicle.length  = alldata$Panicle.length,	
    leaf.length = alldata$Flag.leaf.length	
    )	
head(mydata, 3)	



	

	

2	

2	

##   panicle.length leaf.length	
## 1       20.48182    28.37500	
## 2       26.83333    39.00833	
## 3       23.53333    27.68333	

dim(mydata)	

## [1] 374   2	

missing <- apply(is.na(mydata), 1, sum) > 0	
mydata <- mydata[!missing, ]	
dim(mydata)	

## [1] 341   2	

Let’s	check	the	variation	of	panicle	length	and	flag	leaf	length	with	a	scatter	plot.	

# look at the relationship between two variables	
plot(mydata)	

	



	

	

3	

3	

lim <- range(mydata)	
plot(mydata, xlim = lim, ylim = lim)	

	

Look	at	the	scatter	plot.	When	one	trait	becomes	large,	the	other	tends	to	also	become	large.	
Calculate	the	variance-covariance	matrix	and	correlation	matrix	of	both	traits	and	confirm	it	
numerically.	

# statistics for measuring the relationship between two variables	
cov(mydata)	

##                panicle.length leaf.length	
## panicle.length       12.67168    11.57718	
## leaf.length          11.57718    33.41344	

cor(mydata)	

##                panicle.length leaf.length	
## panicle.length       1.000000    0.562633	
## leaf.length          0.562633    1.000000	



	

	

4	

4	

Both	the	correlation	and	the	covariance	have	positive	values.	Thus,	we	can	confirm	that	both	
tend	to	vary	together.	

In	order	to	simplify	the	following	calculations	and	explanations,	each	trait	is	normalized	to	be	
zero	on	average	(the	average	is	subtracted	from	the	original	variable).	

# subtract the mean from each column to shift the center of data to the origi
n  	
mydata <- sweep(mydata, 2, apply(mydata, 2, mean))	
summary(mydata)	

##  panicle.length     leaf.length      	
##  Min.   :-8.8442   Min.   :-15.1798  	
##  1st Qu.:-2.1048   1st Qu.: -4.0048  	
##  Median :-0.1358   Median : -0.6548  	
##  Mean   : 0.0000   Mean   :  0.0000  	
##  3rd Qu.: 2.0892   3rd Qu.:  3.9036  	
##  Max.   :11.2058   Max.   : 18.8480	

cov(mydata)	

##                panicle.length leaf.length	
## panicle.length       12.67168    11.57718	
## leaf.length          11.57718    33.41344	

cor(mydata)	

##                panicle.length leaf.length	
## panicle.length       1.000000    0.562633	
## leaf.length          0.562633    1.000000	

lim <- range(mydata)	
plot(mydata, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	



	

	

5	

5	

	

Note	that	scaling	the	variables	does	not	change	the	relationship	between	the	variables	
represented	by	the	variance-covariance	matrix	and	the	correlation	matrix.	

Let’s	perform	principal	component	analysis	and	plot	the	obtained	principal	component	scores.	

# perform principal component analysis (PCA) and draw a scatterplot	
res <- prcomp(mydata)	
lim <- range(res$x)	
plot(res$x, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	



	

	

6	

6	

	

Let’s	check	the	relationship	between	principal	component	scores	and	original	variables	by	
drawing	a	scatter	diagram	side	by	side.	

# show graphs side by side	
op <- par(mfrow = c(1,2))	
lim <- range(mydata)	
plot(mydata, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	
lim <- range(res$x)	
plot(res$x, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	



	

	

7	

7	

	

par(op)	

The	side-by-side	comparison	of	the	principal	component	scores	and	the	original	variables	
shows	that	the	principal	component	scores	have	the	rotation	(and	inversion)	of	the	original	
variables.	Principal	component	analysis	is	a	method	for	representing	the	variation	of	the	
original	variables	with	new	variables	with	as	few	dimensions	as	possible.	For	example,	the	
horizontal	axis	in	the	right	figure	expresses	the	variation	of	the	two	variables	of	panicle	length	
and	flag	leaf	length	as	the	variation	of	one	new	variable	(i.e,,	the	first	principal	component).	It	
can	be	seen	that	the	first	principal	component	alone	can	explain	most	of	the	variation	of	the	
original	variables.	In	addition,	the	scores	of	the	second	principal	component	represents	the	
variation	that	could	not	be	explained	by	the	first	principal	component.	

Now	let’s	check	how	much	each	principal	component	actually	explains	the	variations.	

# show the result of PCA	
summary(res)	

## Importance of components:	
##                           PC1    PC2	
## Standard deviation     6.2117 2.7385	
## Proportion of Variance 0.8373 0.1627	
## Cumulative Proportion  0.8373 1.0000	

It	can	be	seen	that	the	first	principal	component	accounts	for	83.7%	of	the	total	variation,	and	
the	second	principal	component	accounts	for	the	remaining	16.3%.	That	is,	it	can	be	seen	that	
80%	or	more	of	the	variation	of	panicle	length	and	flag	leaf	length	can	be	represented	by	one	
variable	(first	main	component).	

Let’s	look	at	the	results	in	more	detail.	

res	

## Standard deviations (1, .., p=2):	
## [1] 6.211732 2.738524	
## 	
## Rotation (n x k) = (2 x 2):	



	

	

8	

8	

##                       PC1        PC2	
## panicle.length -0.4078995 -0.9130268	
## leaf.length    -0.9130268  0.4078995	

Standard	deviations	represent	the	standard	deviation	of	the	first	and	second	principal	
components	which	are	new	variables.	In	addition,	Rotation	represents	a	unit	vector	
representing	the	orientation	of	the	axes	of	the	first	and	second	principal	components	(note	
that	these	unit	vectors	are	called	eigenvectors,	as	will	be	described	later).	

In	addition,	the	results	mentioned	above	can	also	be	retrieved	separately	as	follows.	

res$sdev	

## [1] 6.211732 2.738524	

res$rotation	

##                       PC1        PC2	
## panicle.length -0.4078995 -0.9130268	
## leaf.length    -0.9130268  0.4078995	

Let’s	draw	graphs	for	the	result	of	principal	component	analysis.	

# draw graphs for PCA	
op <- par(mfrow = c(1,2))	
plot(res)	
biplot(res)	

	

par(op)	

The	left	graph	showed	the	variance	of	the	principal	component	scores,	which	is	the	square	of	
the	standard	deviation	of	the	principal	component	(note	that	the	variance	of	the	principal	
component	score	is	the	eigenvalue	of	the	variance	covariance	matrix).	The	right	graph	is	a	
biplot	that	shows	the	relationship	between	principal	component	scores	and	variables.	Looking	
at	the	biplot,	both	the	flag	leaf	length	(leaf.	Length)	and	the	panicle	length	(panicle.	Length)	
have	arrows	pointing	to	the	left,	and	both	traits	have	large	values	for	the	first	principal	



	

	

9	

9	

component	(the	horizontal	axis).	Samples	that	have	smaller	scores	for	the	component	have	
larger	values	in	both	traits.	That	is,	the	first	principal	component	can	be	interpreted	as	a	
variable	that	represents	“size”.	On	the	other	hand,	the	arrow	of	the	flag	leaf	length	is	(slightly)	
upward,	the	arrow	of	the	panicle	length	is	downward.	A	sample	with	larger	flag	leaf	length	has	
a	larger	value,	while	a	sample	with	large	panicle	length	has	a	smaller	value.	That	is,	it	can	be	
interpreted	that	the	second	principal	component	is	a	variable	that	represents	the	“ratio”	of	the	
length	of	the	flag	leaf	and	the	panicle	length.	The	details	about	the	biplot	will	be	explained	
again	later.	

Formulation of principal component analysis 

 Here,	I	will	outline	the	formulation	of	principal	component	analysis,	using	the	two-
dimensional	data	mentioned	earlier	as	an	example.	 	 First,	let	us	consider	that	the	variation	
of	the	two	variables	of	panicle	length	and	flag	leaf	length	is	represented	by	one	new	variable.	
The	orientation	of	the	axis	representing	this	new	variable	is	tentatively	assumed	as	
(1/√2, 1/√2)	here.	The	value	of	the	new	variable	corresponds	to	the	position	of	the	foot	of	the	
perpendicular	line	from	this	data	point	to	this	axis.	That	is,	the	red	line	of	the	figure	drawn	
below	is	the	axis	that	represents	the	new	variable,	the	gray	line	is	the	perpendicular	line	from	
the	data	point	to	the	new	axis,	and	the	green	+	is	the	foot	of	the	perpendicular	line.	The	
position	of	the	foot	of	this	perpendicular	is	the	value	of	the	new	variable.	

# plot again	
lim <- range(mydata)	
plot(mydata, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	
# arbitrary line	
u.temp <- c(1 / sqrt(2), 1 / sqrt(2))	
abline(0, u.temp[2] / u.temp[1], col = "red")	
# draw scores	
score.temp <- as.matrix(mydata) %*% u.temp	
x <- score.temp * u.temp[1]	
y <- score.temp * u.temp[2]	
segments(x, y, mydata$panicle.length, mydata$leaf.length, col = "gray")	
points(x, y, pch = 4, col = "green")	



	

	

10	

10	

	

Now,	let’s	focus	on	one	sample	and	examine	the	relationship	between	the	value	of	the	original	
variable	and	the	value	of	the	new	variable	in	more	detail.	Here,	let’s	draw	a	figure	to	pay	
attention	to	one	sample	that	has	the	longest	flag	leaf	length.	

# plot again	
lim <- range(mydata)	
plot(mydata, xlim = lim, ylim = lim)	
abline(h = 0, v = 0)	
abline(0, u.temp[2] / u.temp[1], col = "red")	
id <- which.max(mydata$leaf.length)	
arrows(0, 0, mydata$panicle.length[id], mydata$leaf.length[id], col = "purple
")	
arrows(x[id], y[id], mydata$panicle.length[id], mydata$leaf.length[id], col =
 "pink")	
arrows(0, 0, x[id], y[id], col = "blue")	



	

	

11	

11	

	

Now,	if	the	original	variable	is	represented	by	a	new	variable	as	shown	in	the	above	figure,	the	
information	indicated	by	the	pink	arrow	vector	will	be	lost.	Now,	assuming	that	the	vector	
representing	the	original	variable	as	𝐱! ,	the	vector	representing	the	new	variable	as	𝐲! ,	and	the	
vector	representing	the	lost	information	as	𝐞! ,	the	square	of	the	variation	of	the	original	
variable	is	

|𝐱!|" = |𝐲! + 𝐞!|"	

= (𝐲! + 𝐞!)#(𝐲! + 𝐞!)	

= 𝐲!#𝐲! + 𝐞!#𝐲! + 𝐲!#𝐞! + 𝐞!#𝐞! 	

= |𝐲!|" + |𝐞!|" + 2𝐞!#𝐲! 	

= |𝐲!|" + |𝐞!|"	

(1)	

That	is,	the	square	of	the	variation	of	the	original	variable	can	be	divided	into	the	square	of	the	
variation	of	the	new	variable	and	the	square	of	the	variation	that	is	lost	in	the	new	variable.	



	

	

12	

12	

This	means	that	the	minimization	of	lost	information	is	synonymous	with	the	maximization	of	
the	variability	of	new	variables.	

How	can	we	find	an	axis	that	maximizes	the	variability	of	the	new	variables?	Consider	a	vector,	
𝐮$,	that	determines	the	orientation	of	the	axis,and	seek	that	maximizes	the	variation	of	the	
new	variable.	Since	there	are	infinite	possibilities	when	we	consider	vectors	of	various	sizes,	
let	the	size	of	vector	size	as	1	(unit	vector)	here.	That	is,	

|𝐮$|" = 𝐮$#𝐮$ = 𝑢$$" + 𝑢$"" = 1	

(2)	

The	variance	of	the	value	of	the	new	variable	𝑧!% 	under	this	condition	

1
𝑛 − 13𝑧$!"

&

!'$

]	

(3)	

We	will	maximize	this	value.	𝑧$! 	is	the	position	of	the	foot	of	the	perpendicular,	and	the	inner	
product	of	𝐮$	and	𝐱! .	

𝑧$! = 𝐱!#𝐮$ = 𝑢$$𝑥$! + 𝑢$"𝑥"! 	

(4)	

Note	that	the	relationship	with	in	equation	(1)	is	

𝐲! = 𝑧$!𝐮$	

To	maximize	Equation	(3)	under	the	condition	of	Equation	(2),	use	the	method	of	Lagrange’s	
undetermined	multipliers.	That	is,	

𝐿(𝐮! , 𝜆) =
1

𝑛 − 13(
&

!'$

𝑢$$𝑥$! + 𝑢$"𝑥"!)" − 𝜆(𝑢$$" + 𝑢$"" − 1)	

First,	partially	differentiate	the	above	equation	with	𝑢$$	and	𝑢$".	

𝜕𝐿
𝜕𝑢$$

=
1

𝑛 − 132
&

!'$

(𝑢$$𝑥$! + 𝑢$"𝑥"!)𝑥$! − 2𝜆𝑢$$ = 0	

𝜕𝐿
𝜕𝑢$"

=
1

𝑛 − 132
&

!'$

(𝑢$$𝑥$! + 𝑢$"𝑥"!)𝑥"! − 2𝜆𝑢$" = 0	

The	above	formula	can	be	arranged	as	

1
𝑛 − 1 (𝑢$$3𝑥$!"

&

!'$

+ 𝑢$"3𝑥$!

&

!'$

𝑥"!) = 𝜆𝑢$$	

1
𝑛 − 1 (𝑢$$3𝑥$!

&

!'$

𝑥"! + 𝑢$"3𝑥"!"
&

!'$

) = 𝜆𝑢$"	

If	the	above	two	expressions	are	expressed	using	a	matrix	



	

	

13	

13	

1
𝑛 − 1

⎝

⎜⎜
⎛

3𝑥$!"
&

!'$

3𝑥$!

&

!'$

𝑥"!

3𝑥$!

&

!'$

𝑥"! 3𝑥"!"
&

!'$ ⎠

⎟⎟
⎞
@
𝑢$$
𝑢$"A = 𝜆 @

𝑢$$
𝑢$"A	

Here,	note	that	in	the	portion	from	the	top	of	the	left	side	to	the	matrix,	the	diagonal	
components	represent	variances,	while	the	nondiagonal	component	are	covariances.	Now,	let	
the	variance-covariance	matrix	be	$	and	the	vector	representing	the	orientation	of	the	axis	be	
𝐮$	

𝐕𝐮$ = 𝜆𝐮$	

(5)	

For	the	equation	(5),	𝐮$ = 𝟎	is	a	self-evident	solution,	but	is	not	the	solution	we	are	going	to	
solve.	Finding	a	solution	for	the	matrix	𝐕,	except	for	which	Eq.	(5)	holds,	is	called	the	
eigenvalue	problem.	We	call	the	vector	ル𝐮$	as	an	eigenvector	of	and	𝜆	as	its	eigenvalues.	

To	summarize	the	results,	“to	find	a	new	variable	that	best	describes	the	variation	of	the	
original	variable”	eventually	corresponds	to	“to	find	the	variance-covariance	matrix	of	the	
original	variable	and	find	its	first	eigenvector”.	

Equation	(5)	can	be	rewritten	as	follows.	

(𝐕 − 𝜆𝐈)𝐮$ = 𝟎	

The	determinant	of	the	matrix	representing	the	coefficients	of	the	above	equation	must	be	0	in	
order	for	this	equation	to	have	a	solution	other	than	𝐮$ = 𝟎.	That	is,	

|𝐕 − 𝜆𝐈| = 0	

This	equation	is	called	an	eigen	(or	characteristic)	equation.。	

Here,	although	the	case	where	the	number	of	variables	is	two	has	been	described	as	an	
example,	in	general,	if	there	are	m	variables,	then	𝐕	is	an	𝑚 ×𝑚	variance-covariance	matrix.	If	
the	matrix	𝐕	is	an	𝑚 ×𝑚	symmetric	matrix	(the	variance-covariance	matrix	is	always	a	
symmetric	matrix),	has	𝑚	real	eigenvalues	𝜆$, . . . , 𝜆(	and	the	corresponding	eigenvectors	
𝐮$, . . . , 𝐮(,	which	are	unit	vectors	in	which	all	elements	are	real	numbers	and	orthogonal	to	
each	other.	Now,	if	eigenvectors	are	rearranged	in	descending	order	of	eigenvalues	(𝜆$ ≥. . . ≥
𝜆(),	𝐮$, . . . , 𝐮(	becomes	eigenvectors	of	the	first,	…,	𝑚-th	principal	components.	

Let’s	perform	principal	component	analysis	according	to	the	calculation	procedure	mentioned	
above.	First,	calculate	the	variance-covariance	matrix	𝐕.	

# calculate covariance matrix	
cov <- var(mydata)	
cov	

##                panicle.length leaf.length	
## panicle.length       12.67168    11.57718	
## leaf.length          11.57718    33.41344	

Next,	perform	eigenvalue	decomposition	of	the	variance-covariance	matrix.	We	use	the	
function	eigen	for	eigenvalue	decomposition.	



	

	

14	

14	

# eigenvalue decomposition	
eig <- eigen(cov)	
eig	

## eigen() decomposition	
## $values	
## [1] 38.585610  7.499513	
## 	
## $vectors	
##           [,1]       [,2]	
## [1,] 0.4078995 -0.9130268	
## [2,] 0.9130268  0.4078995	

Eigenvalue	decomposition	yields	eigenvalues	(eigenvalues),	𝜆$, . . . , 𝜆(,	and	eigenvectors	
(eigenvectors),	𝐮$, . . . , 𝐮(.	

Let’s	look	at	the	results	obtained	with	the	function	eigen	and	compare	them	with	the	results	
obtained	with	the	function	prcomp.	

# compare results	
res <- prcomp(mydata)	
res	

## Standard deviations (1, .., p=2):	
## [1] 6.211732 2.738524	
## 	
## Rotation (n x k) = (2 x 2):	
##                       PC1        PC2	
## panicle.length -0.4078995 -0.9130268	
## leaf.length    -0.9130268  0.4078995	

sqrt(eig$values)	

## [1] 6.211732 2.738524	

Standard	deviations	are	the	square	root	of	the	eigenvalues.	This	is	because	the	variance	of	the	
new	variables	(called	principal	component	scores)	is	same	as	the	eigenvalue,	as	described	later.	
In	addition,	rotation	is	represented	by	eigenvectors,	and	both	results	are	identical	except	for	
the	difference	between	positive	and	negative.	The	sign	of	the	coefficient	depends	on	which	side	
of	the	axis	is	a	positive	value,	but	in	some	cases	it	may	be	upside	down	because	there	is	no	rule	
to	uniquely	determine	it.	In	the	present	result,	the	result	of	using	the	function	prcomp	and	the	
result	of	using	the	function	eigen	are	opposite	in	the	positive	/	negative	of	the	first	principal	
component	score.	

Now	let’s	calculate	the	value	of	the	new	variable,	i.e.,	the	principal	component	score.	Principal	
component	scores	can	be	calculated	using	equation	(4).	For	example,	the	principal	component	
score	of	the	first	sample	can	be	calculated	as	follows:	

# calculate principal component scores	
mydata[1,]	

##   panicle.length leaf.length	
## 1      -3.995677   -2.221425	

eig$vectors[,1]	

## [1] 0.4078995 0.9130268	



	

	

15	

15	

mydata[1,1] * eig$vectors[1,1] + mydata[1,2] * eig$vectors[2,1]	

## [1] -3.658055	

res$x[1,1]	

## [1] 3.658055	

To	calculate	principal	component	scores	for	all	samples	and	all	principal	components	at	once:	
That	is,	it	is	calculated	as	the	product	of	the	matrix	of	eigenvectors	and	the	data	matrix.	

score <- as.matrix(mydata) %*% eig$vectors	
head(score)	

##        [,1]       [,2]	
## 1 -3.658055  2.7420420	
## 2  8.641243  1.2802695	
## 3 -3.044854 -0.3262037	
## 4  1.665770 -4.1692908	
## 5  8.389476 -3.3045123	
## 6  5.897673  2.4732600	

head(res$x)	

##         PC1        PC2	
## 1  3.658055  2.7420420	
## 2 -8.641243  1.2802695	
## 3  3.044854 -0.3262037	
## 4 -1.665770 -4.1692908	
## 5 -8.389476 -3.3045123	
## 6 -5.897673  2.4732600	

The	obtained	principal	component	scores	and	the	principal	component	scores	obtained	using	
the	function	prcomp	are	identical	except	for	the	positive	/	negative	of	the	first	principal	
component	scores	(the	positive	/	negative	being	reversed	is	the	positive	/	negative	as	
described	above).	

Let’s	examine	the	variance	and	covariance	of	principal	component	scores.	Compares	the	
elements	of	this	matrix	with	the	eigenvalues.	

# variance of scores = eigenvalues 	
var(score)	

##              [,1]         [,2]	
## [1,] 3.858561e+01 6.763202e-16	
## [2,] 6.763202e-16 7.499513e+00	

eig$values	

## [1] 38.585610  7.499513	

The	above	results	show	two	important	points.	One	is	that	the	covariance	of	the	first	principal	
component	and	the	second	principal	component	is	zero.	It	turns	out	that	there	is	no	
redundancy	in	both	components.	The	other	is	that	the	variance	of	the	principal	component	
scores	matches	the	eigenvalues	of	the	principal	components.	This	relationship	can	be	derived	
as	follows:	



	

	

16	

16	

1
𝑛 − 13𝑧%!"

&

!'$

	

=
1

𝑛 − 1𝐳%
#𝐳% 	

=
1

𝑛 − 1 (𝐗𝐮%)
#(𝐗𝐮%)	

=
1

𝑛 − 1𝐮%
#𝐗#𝐗𝐮% 	

= 𝐮%#𝐕𝐮% 	

K∵
1

𝑛 − 1𝐗
#𝐗 = 𝐕M	

= 𝜆%𝐮%#𝐮% 	

N∵ 𝐕𝐮% = 𝜆%𝐮%O	

= 𝜆% 	

N𝐮%#𝐮% = 1O	

where	𝑧!% 	is	the	𝑗-th	principal	component	score	of	the	𝑖-th	sample.	𝐳% = (𝑧!$, . . . 𝑧!&)# 	is	a	
column	vector	consisting	of	the	scores	of	all	samples	of	the	𝑗-th	principal	component,	and	𝐗 =
(𝐱$, . . . , 𝐱&)	is	a	data	matrix	bundling	column	vectors	𝐱% = (𝑥%$, . . . , 𝑥%()# 	consisting	of	the	
original	𝑚	variables	of	the	𝑖-th	sample.	Because	of	this	relationship,	as	mentioned	earlier,	the	
standard	deviation	of	the	principal	component	scores	in	the	result	of	the	function	prcomp	
coincides	with	the	square	root	of	the	eigenvalue	in	the	result	of	the	function	eigen.	

Let’s	check	another	important	relationship.	The	sum	of	the	eigenvalues	(ie,	the	sum	of	the	
variances	of	the	principal	components)	matches	the	sum	of	the	variances	of	the	original	
variables,	as	shown	below.	

# sum of variance 	
sum(eig$values)	

## [1] 46.08512	

sum(diag(cov))	

## [1] 46.08512	

Therefore,	calculating	the	ratio	of	the	eigenvalue	of	the	𝑗-th	principal	component	to	the	sum	of	
the	eigenvalues	of	all	principal	components,	is	same	as	calculating	the	ratio	of	the	variance	of	
jth	principal	component	to	the	sum	of	the	variances	of	the	original	variables.	This	ratio	is	
called	the	contribution	of	the	j-th	principal	component.	Also,	the	sum	of	contributions	from	the	
first	principal	component	to	the	𝑗-th	principal	component	is	called	the	cumulative	contribution	
of	the	𝑗-th	principal	component.	Contribution	and	cumulative	contribution	provide	a	good	
basis	for	determining	the	number	of	effective	(necessary)	components,	as	discussed	later.	Now	
let’s	calculate	the	contribution	and	the	cumulative	contribution	of	principal	coponents.	

# contribution	
eig$values / sum(eig$values)	



	

	

17	

17	

## [1] 0.8372682 0.1627318	

cumsum(eig$values) / sum(eig$values)	

## [1] 0.8372682 1.0000000	

summary(res)	

## Importance of components:	
##                           PC1    PC2	
## Standard deviation     6.2117 2.7385	
## Proportion of Variance 0.8373 0.1627	
## Cumulative Proportion  0.8373 1.0000	

You	can	see	that	the	first	principal	component	accounts	for	83.7%	of	the	total	variation	(sum	
of	the	variance	of	the	original	variables).	This	is	the	same	as	the	result	shown	when	displaying	
the	result	of	the	function	prcomp	with	the	function	summary.	

Principal Component Analysis Based on Correlation Matrix 

 So	far,	we	have	discussed	principal	component	analysis	based	on	the	variance-covariance	
matrix.	This	method	cannot	be	applied	when	the	variables	include	different	measurement	
scales.	This	is	because	it	is	difficult	to	give	meaning	to	covariance	between	variables	with	
different	measurement	scales.	

For	example,	when	considering	the	covariance	between	two	variables	of	length	and	number,	
the	size	of	the	covariance	is	different	when	measuring	the	length	in	units	of	meter	and	when	
measuring	in	units	of	centi-meter.	(The	latter	will	be	100	times	larger).	Therefore,	the	result	of	
principal	component	analysis	based	on	the	variance-covariance	matrix	of	these	two	variables	
changes	depending	on	the	unit	of	measure	of	length.	

Also,	for	example,	even	when	both	of	two	variables	are	measured	in	length,	if	one	is	very	large	
compared	to	the	other,	the	larger	variable	mainly	determines	the	magnitude	of	covariance.	In	
principle	component	analysis,	results	are	obtained	that	depend	mainly	on	the	variation	in	the	
larger	variable.	

The	problem	above	is	mainly	come	from	the	estimate	of	covariance	has	the	following	form:	

3(
&

!'$

𝑥! − 𝑥)(𝑦! − 𝑦)/(𝑛 − 1)	

Now	let’s	calculate	and	check	the	problem	specifically.	First,	let’s	draw	a	scatter	diagram	by	
extracting	the	data	of	panicle	length	(Panicle.length)	and	the	number	of	florets	in	a	single	
panicle	(Florets.per.panicle).	The	panicle	length	is	a	variable	measured	in	centi-meter	(cm),	
and	the	number	of	florets	in	a	single	panicle	is	a	variable	measured	as	a	number.	

# extract panicle length and florets per panicle	
mydata <- data.frame(	
    panicle.length  = alldata$Panicle.length,	
    panicle.florets = alldata$Florets.per.panicle	
    )	
missing <- apply(is.na(mydata), 1, sum) > 0	
mydata <- mydata[!missing, ]	
# look at the relationship between two variables	
plot(mydata)	



	

	

18	

18	

	

Next,	let’s	do	principal	component	analysis	based	on	the	variancecovariance	matrix.	The	point	
to	note	is	that	the	next	analysis	is	an	“incorrect	analysis	example”.	

# the following analysis is wrong	
res <- prcomp(mydata)	
res	

## Standard deviations (1, .., p=2):	
## [1] 3.5623427 0.2901551	
## 	
## Rotation (n x k) = (2 x 2):	
##                        PC1         PC2	
## panicle.length  0.99926174 -0.03841834	
## panicle.florets 0.03841834  0.99926174	

The	analysis	results	show	that	the	first	principal	component	is	a	variable	that	mainly	explains	
panicle	length	from	eigenvectors.	



	

	

19	

19	

Let’s	see	what	happens	if	the	panicle	length	is	measured	in	meters	(the	next	analysis	is	also	an	
“incorrect	analysis	example”).	

# if panicle length is measured in meter unit	
mydata$panicle.length <- mydata$panicle.length / 100	
res.2 <- prcomp(mydata)	
res.2	

## Standard deviations (1, .., p=2):	
## [1] 0.32097715 0.03220266	
## 	
## Rotation (n x k) = (2 x 2):	
##                        PC1         PC2	
## panicle.length  0.04750446 -0.99887103	
## panicle.florets 0.99887103  0.04750446	

It	turns	out	that	the	first	principal	component	is	a	variable	that	mainly	explains	the	variation	in	
the	number	of	florets.	In	other	words,	the	result	of	the	principal	component	analysis	changes	
completely	because	the	measurement	scale	is	different.	

How	can	we	solve	this	problem?	One	way	is	to	perform	the	principal	component	analysis	after	
scaling	the	variables	to	mean	0	and	variance	1	respectively.	By	performing	normalization	in	
this	way,	principal	component	analysis	can	be	performed	without	being	influenced	by	the	
difference	in	magnitude	of	variation	in	each	variable.	Let’s	actually	calculate	it.	

# scaling	
mydata.scaled <- scale(mydata)	
var(mydata.scaled)	

##                 panicle.length panicle.florets	
## panicle.length       1.0000000       0.4240264	
## panicle.florets      0.4240264       1.0000000	

res.scaled <- prcomp(mydata.scaled)	
res.scaled	

## Standard deviations (1, .., p=2):	
## [1] 1.1933258 0.7589292	
## 	
## Rotation (n x k) = (2 x 2):	
##                       PC1        PC2	
## panicle.length  0.7071068 -0.7071068	
## panicle.florets 0.7071068  0.7071068	

As	a	result	of	analysis,	it	can	be	seen	that	the	first	principal	component	is	a	variable	that	
explains	that	both	variables	become	large,	and	the	second	principal	component	is	a	variable	
that	explains	that	the	other	becomes	smaller	when	one	becomes	larger.	

Note	that	the	variance-covariance	matrix	calculated	between	variables	scaled	in	this	way	
matches	the	correlation	matrix	calculated	between	the	variables	before	scaling.	Thus,	in	other	
words,	instead	of	the	eigenvalue	decomposition	of	the	variance-covariance	matrix,	the	
eigenvalue	decomposition	of	the	correlation	matrix	produces	the	same	result.	Let’s	confirm	
this	using	the	function	eigen.	

# cov and cor	
eigen(cov(mydata.scaled))	



	

	

20	

20	

## eigen() decomposition	
## $values	
## [1] 1.4240264 0.5759736	
## 	
## $vectors	
##           [,1]       [,2]	
## [1,] 0.7071068 -0.7071068	
## [2,] 0.7071068  0.7071068	

eigen(cor(mydata))	

## eigen() decomposition	
## $values	
## [1] 1.4240264 0.5759736	
## 	
## $vectors	
##           [,1]       [,2]	
## [1,] 0.7071068 -0.7071068	
## [2,] 0.7071068  0.7071068	

The	prcomp	function	performs	principal	component	analysis	based	on	the	correlation	matrix	
when	the	option	scale	=	T	is	specified.	

# perform principal component analysis on scaled data	
res.scaled.2 <- prcomp(mydata, scale = T)	
res.scaled.2	

## Standard deviations (1, .., p=2):	
## [1] 1.1933258 0.7589292	
## 	
## Rotation (n x k) = (2 x 2):	
##                       PC1        PC2	
## panicle.length  0.7071068 -0.7071068	
## panicle.florets 0.7071068  0.7071068	

res.scaled	

## Standard deviations (1, .., p=2):	
## [1] 1.1933258 0.7589292	
## 	
## Rotation (n x k) = (2 x 2):	
##                       PC1        PC2	
## panicle.length  0.7071068 -0.7071068	
## panicle.florets 0.7071068  0.7071068	

In	fact,	principal	component	analysis	based	on	a	correlation	matrix	of	two	variables	always	
calculates	the	same	eigenvector.	Also,	if	the	correlation	between	two	variables	is	r,	the	
eigenvalues	are	always	1 + 𝑟	and	1 − 𝑟.	You	can	understand	the	mechanism	by	looking	at	the	
formula	shown	below.	

Assuming	that	the	correlation	matrix	between	two	variables	is	

𝐑 = @1 𝑟
𝑟 1A	

λ	making	the	eigen	(characteristic)	equation	equal	to	0	is	

|𝐑 − 𝜆𝐈| = 0	



	

	

21	

21	

⇔ (1 − 𝜆)" − 𝑟" = 0	

It	is	obtained	as	a	solution	of	

𝜆$ = 1 + 𝑟, 𝜆" = 1 − 𝑟	

When	the	eigenvalue	is	𝜆$,	the	eigenvectors	satisfy	𝐑𝐮$ = 𝜆$𝐮$.That	is,	

𝑢$$ + 𝑟𝑢$" = (1 + 𝑟)𝑢$$	

𝑟𝑢$$ + 𝑢$" = (1 + 𝑟)𝑢$"	

If	you	solve	them、	

𝑢$$ = 𝑢$" =
1
√2

≈ 0.71	

Similarly,	the	eigenvectors	𝜆"	for	the	eigenvalue	𝐮"	can	be	obtained,	

𝑢$$ = −
1
√2

, 𝑢$" =
1
√2
	

Application to multivariate data 

 So	far,	I	have	explained	the	principle	component	analysis	based	on	two	examples	of	
variables.	However,	in	most	cases	where	principal	component	analysis	is	actually	used,	data	
consisting	of	a	large	number	of	variables	is	often	analyzed.	Here,	while	analyzing	data	
consisting	of	seven	variables,	we	will	explain	how	to	determine	the	number	of	principal	
components	and	how	to	interpret	the	meaning	of	principal	components.	

First,	extract	seven	variables	(leaf.length,	leaf.width,	plant.height,	panicle.number,	
panicle.length,	seed.length,	seed.width).	

# multivariate (>3) analysis	
mydata <- data.frame(	
    leaf.length = alldata$Flag.leaf.length,	
    leaf.width  = alldata$Flag.leaf.width,	
    plant.height = alldata$Plant.height,	
    panicle.number = alldata$Panicle.number,	
    panicle.length = alldata$Panicle.length,	
    seed.length = alldata$Seed.length,	
    seed.width = alldata$Seed.width	
    )	
missing <- apply(is.na(mydata), 1, sum) > 0	
mydata <- mydata[!missing, ]	

Let’s	perform	principal	component	analysis	based	on	the	correlation	matrix.	

# PCA based on a correlation matrix	
res <- prcomp(mydata, scale = T)	
summary(res)	

## Importance of components:	
##                           PC1    PC2    PC3     PC4    PC5     PC6     PC7	
## Standard deviation     1.5626 1.2797 1.0585 0.77419 0.7251 0.64540 0.50854	
## Proportion of Variance 0.3488 0.2339 0.1601 0.08562 0.0751 0.05951 0.03694	
## Cumulative Proportion  0.3488 0.5827 0.7428 0.82844 0.9035 0.96306 1.00000	



	

	

22	

22	

plot(res)	

	

While	seven	principal	components	are	calculated	for	data	consisting	of	seven	variables,	how	
many	principal	components	should	be	used	to	summarize	the	data?	Although	various	methods	
have	been	proposed	as	methods	for	determining	the	number	of	effective	principal	components,	
here	I	present	some	simple	rules.	

1. Adopt	the	number	of	principal	components	whose	cumulative	contribution	exceeds	a	
specified	percentage.	70%	to	90%	are	often	used	as	a	pre-defined	percentage.	

2. Adopt	a	principal	component	whose	contribution	exceeds	the	average	explanatory	power	
per	original	variable.	When	the	number	of	variables	is	q,	a	principal	component	whose	
contribution	exceeds	1	/	q	is	adopted.	

3. In	the	case	of	the	correlation	matrix,	the	above	rule	adopts	the	principal	component	
whose	“eigen	value	exceeds	1”.	However,	this	standard	is	often	too	strict.	There	is	also	a	
report	that	about	0.7	is	appropriate.	

4. In	the	graph	of	eigen	values,	use	as	the	number	of	components	the	point	that	changes	
from	abrupt	change	to	gentle	change.	

Assuming	that	the	percentage	determined	based	on	the	first	rule	is	80%,	the	first	four	
principal	components	with	a	cumulative	contribution	of	82.8%	are	selected.	Next,	based	on	the	
second	rule,	the	first	three	principal	components	whose	contribution	rate	exceeds	1/7	=	14.3%	
are	selected.	This	is	the	same	with	the	third	rule	(However,	if	the	eigenvalue	is	0.7	or	more,	the	
first	five	principal	components	are	selected).	Finally,	in	the	fourth	rule,	the	eigenvalue	
decreases	rapidly	until	the	fourth	principal	component,	and	then	decreases	gradually.	



	

	

23	

23	

Therefore,	the	first	four	principal	components	are	chosen.	Combining	the	above,	the	first	three	
or	four	principal	components	are	considered	to	be	the	appropriate	number	of	principal	
components.	

Let’s	draw	a	scatter	plot	of	the	first	four	principal	components.	In	addition,	let’s	color	each	
subpopulation	(Sub.population)	in	order	to	see	the	relationship	with	genetic	structure.	

# scatter plot principal component scores	
subpop <- alldata$Sub.population[!missing]	
op <- par(mfrow = c(1,2))	
plot(res$x[,1:2], col = as.numeric(subpop))	
legend("topleft", levels(subpop), col = 1:nlevels(subpop), pch = 1)	
plot(res$x[,3:4], col = as.numeric(subpop))	

	

par(op)	

df <- data.frame(subpop = subpop, res$x[,1:3])	
plot_ly(data = df, x = ~PC1, y = ~PC2, z = ~PC3, color = ~subpop, type = "sca
tter3d", mode = "markers")	

When	you	draw	a	scatter	plot,	you	can	see	that	the	dots	of	the	same	color	are	plotted	closely.	
This	suggests	that	there	is	some	relationship	between	principal	component	scores	and	genetic	
background.	

What	kind	of	variation	do	the	first	four	principal	components	capture?	First,	let’s	look	at	their	
eigenvectors.	

# understand the meaning of components (eigen vectors)	
res$rotation[,1:4]	

##                        PC1        PC2         PC3         PC4	
## leaf.length     0.46468878 -0.0863622  0.33735685 -0.28604795	
## leaf.width      0.26873998 -0.5447022  0.19011509 -0.36565484	
## plant.height    0.43550572  0.2369710  0.35223063  0.55790981	
## panicle.number -0.03342277  0.6902669  0.07073948 -0.15465539	
## panicle.length  0.56777431  0.1140531  0.01542783  0.07533158	



	

	

24	

24	

## seed.length     0.27961838 -0.2343565 -0.67403236  0.42404985	
## seed.width     -0.34714081 -0.3086850  0.51615742  0.51361303	

Looking	at	the	eigenvectors,	the	first	principal	component	is	a	positive	value	except	for	the	
number	of	panicles	(panicle.number)	and	the	width	of	the	seed	(seed.width),	and	it	is	a	
variable	that	explains	the	“size”	excluding	the	width	of	the	seed.	The	second	principal	
component	shows	that	the	number	of	panicles	(panicle.number)	has	a	relatively	large	weight.	

In	this	way,	it	is	difficult	to	interpret	the	meaning	of	the	main	component	based	on	the	
numerical	values.	To	visualize	it,	draw	a	biplot	graph.	

# understand the meaning of components (biplot)	
op <- par(mfrow = c(1,2))	
biplot(res, choices = 1:2)	
biplot(res, choices = 3:4)	

	

par(op)	

The	size	and	orientation	of	an	arrow	with	a	variable	name	indicates	the	relationship	between	
each	principal	component	and	that	variable.	For	example,	from	the	left	figure,	samples	which	
have	large	scores	of	the	first	principal	component	(for	example,	174,	230,	etc.)	have	larger	
values	in	plant	height,	panicle	length,	length	of	flag	leaf.	Among	the	variables	whose	length	was	
measured,	only	the	width	of	the	seed	has	the	opposite	direction	to	the	other	variables,	
suggesting	that	the	first	principal	component	takes	a	smaller	score	when	the	seed	width	is	
larger.	It	can	be	seen	that	the	number	of	panicles	is	not	directed	to	the	first	principal	
component	direction,	suggesting	that	it	is	not	involved	in	the	first	principal	component.	The	
third	and	fourth	principal	components	can	be	interpreted	in	the	same	way.	

There	is	a	statistic	called	as	factor	loading,	which	represents	the	relation	between	the	original	
variable	and	the	principal	component.	Factor	loading	is	the	correlation	coefficient	between	the	
value	of	the	original	variable	and	the	principal	component	score.	When	the	absolute	value	of	
this	correlation	coefficient	is	close	to	1,	it	indicates	that	the	relationship	is	strong,	while,	when	
it	is	close	to	0,	it	indicates	that	the	relationship	is	weak	or	absent.	

Now	let’s	calculate	the	factor	loadings	of	the	variables.	



	

	

25	

25	

# calculate factor loadings	
factor.loadings <- cor(mydata, res$x[,1:4])	
factor.loadings	

##                        PC1        PC2         PC3         PC4	
## leaf.length     0.72611038 -0.1105166  0.35710695 -0.22145439	
## leaf.width      0.41992598 -0.6970483  0.20124513 -0.28308496	
## plant.height    0.68050970  0.3032487  0.37285150  0.43192611	
## panicle.number -0.05222553  0.8833255  0.07488083 -0.11973208	
## panicle.length  0.88718910  0.1459523  0.01633103  0.05832068	
## seed.length     0.43692427 -0.2999030 -0.71349267  0.32829357	
## seed.width     -0.54243303 -0.3950201  0.54637516  0.39763215	

Let’s	draw	graphs	for	this	result.	The	factor	loading	can	be	drawn	in	the	following	graphs	
because	it	fits	in	a	circle	of	radius	1.	

# draw factor loadings	
theta <- seq(0, 2 * pi, 0.1)	
op <- par(mfrow = c(1,2))	
# plot pc1 vs. 2	
plot(factor.loadings[,1:2], xlim = c(-1,1), ylim = c(-1,1), pch = 4)	
text(factor.loadings[,1:2], rownames(factor.loadings), col = "red")	
lines(cos(theta), sin(theta), col = "gray")	
abline(v = 0, h = 0)	
# plot pc3 vs. 4	
plot(factor.loadings[,3:4], xlim = c(-1,1), ylim = c(-1,1), pch = 4)	
text(factor.loadings[,3:4], rownames(factor.loadings), col = "red")	
lines(cos(theta), sin(theta), col = "gray")	
abline(v = 0, h = 0)	

	

par(op)	

In	the	principal	component	analysis	based	on	the	correlation	matrix,	the	factor	loading	can	
also	be	calculated	as	follows.	



	

	

26	

26	

factor.loadings <- t(res$sdev * t(res$rotation))[,1:4]	
head(factor.loadings, 3)	

##                    PC1        PC2       PC3        PC4	
## leaf.length  0.7261104 -0.1105166 0.3571069 -0.2214544	
## leaf.width   0.4199260 -0.6970483 0.2012451 -0.2830850	
## plant.height 0.6805097  0.3032487 0.3728515  0.4319261	

Finally,	let’s	perform	principal	component	analysis	of	marker	genotype	data.	First,	we	extract	
marker	genotype	data.	

# prepare multivariate data	
mydata <- alldata[, 50:ncol(alldata)]	
dim(mydata)	

## [1]  374 1311	

head(mydata,3)[,1:5]	

##   id1000223 id1000556 id1000673 id1000830 id1000955	
## 1         2         0         0         0         0	
## 2         0         2         0         2         2	
## 3         0         2         2         2         2	

This	data	is	data	with	a	very	large	number	of	variables	(1311	variables).	Another	feature	is	
that	the	number	of	variables	is	greater	than	the	number	of	samples.	Let’s	use	this	data	to	
perform	principal	component	analysis	based	on	the	variance-covariance	matrix.	

# perform PCA	
res.pca <- prcomp(mydata)	
# summary(res.pca)	
plot(res.pca)	



	

	

27	

27	

	

According	to	the	fourth	rule	shown	above,	it	can	be	judged	that	it	is	better	to	use	the	first	four	
principal	components	(other	rules	cause	the	number	of	principal	components	to	be	too	large).	

Let’s	draw	a	scatter	plot	of	the	first	four	principal	components.	

# plot principal component scores	
subpop <- alldata$Sub.population	
op <- par(mfrow = c(1,2))	
plot(res.pca$x[,1:2], col = as.numeric(subpop))	
plot(res.pca$x[,3:4], col = as.numeric(subpop))	
legend(-10, 20, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 0.5)	



	

	

28	

28	

	

par(op)	

Varieties	can	be	divided	into	five	groups	(+1	group)	based	on	the	scores	of	the	first	to	fourth	
principal	components	

Let’s	also	draw	a	3D	scatter	plot.	

# plot them with plotly	
df <- data.frame(subpop = subpop, res.pca$x[,1:4])	
plot_ly(data = df, x = ~PC1, y = ~PC2, z = ~PC3, color = ~subpop, type = "sca
tter3d", mode = "markers")	
plot_ly(data = df, x = ~PC2, y = ~PC3, z = ~PC4, color = ~subpop, type = "sca
tter3d", mode = "markers")	

Finally,	let’s	compare	PC1-4	included	in	alldata	with	the	first	to	fourth	principal	components	
calculated	this	time.	

# correlation between PC1-4 in alldata on one hand and PC1-4 just calculated	
cor(alldata[,c("PC1","PC2","PC3","PC4")], res.pca$x[,1:4])	

##              PC1         PC2         PC3         PC4	
## PC1  0.988907541 -0.11988231 -0.03045304 -0.03589106	
## PC2  0.006737731 -0.07579808  0.96846220 -0.18191250	
## PC3 -0.129282100 -0.97046613 -0.08514082 -0.03141488	
## PC4  0.012470575 -0.02915991  0.16366284  0.87422607	

Although	there	is	not	a	perfect	match	because	the	calculation	method	is	a	little	different,	PC1-4	
(rows	1-4)	contained	in	alldata	and	the	first	to	fourth	principal	components	(rows	1-4)	
calculated	this	time	provide	almost	the	same	information.	

Multidimensional scaling method 

Although	it	is	not	possible	to	directly	measure	the	characteristics	of	samples,	it	may	be	
possible	to	assess	differences	in	characteristics	between	samples.	In	other	words,	although	the	
characteristics	of	samples	cannot	be	measured	as	points	in	multi-dimensional	space,	it	may	be	
possible	to	measure	distances	among	samples.	



	

	

29	

29	

For	example,	in	population	genetics,	genetic	distance	between	populations	is	calculated	based	
on	polymorphisms	of	genetic	markers.	In	this	case,	although	the	distance	between	the	
populations	is	known,	the	genetic	characteristics	of	the	populations	are	not	measured	as	
multivariate	data.	Another	example	is	the	homology	of	human	impressions	to	certain	objects.	
For	example,	let’s	say	that	you	show	photographs	of	flowers	of	many	varieties	of	pansy	to	100	
people,	and	ask	the	people	to	classify	the	flowers	into	any	number	of	groups.	As	a	result,	when	
the	flowers	of	two	varieties	are	classified	into	the	same	group	by	many	people,	it	means	that	
flowers	are	similar	between	two	varieties.	Conversely,	if	the	flowers	of	two	varieties	are	
classified	into	different	groups	by	many	people,	it	means	that	they	were	judged	as	unsimilar.	
Using	such	data,	it	is	possible	to	set	the	value	as	the	distance	between	varieties	by	totaling	how	
many	of	people	classified	them	into	different	groups.	Again,	in	this	case,	although	we	do	not	try	
to	characterize	the	flower	of	each	variety	in	the	multidimensional	space	of	human	impression,	
it	is	possible	to	measure	the	difference	in	the	human	impression	among	the	varieties	as	the	
distance.	

Here,	based	on	the	data	measured	as	distance,	I	will	outline	the	method	of	summarizing	the	
variation	of	samples	with	low-dimensional	variables.	There	are	a	variety	of	such	methods.	
Here	I	will	introduce	classical	multidimensional	scaling.	

Here,	the	distances	among	rice	accessions	(lines	and	varieties)	are	calculated	based	on	marker	
genotype	data,	and	analysis	by	multidimensional	scaling,	which	is	performed	based	on	the	
distance	matrix.	

First,	let’s	extract	marker	genotype	data	and	calculate	the	distance	matrix	based	on	them.	

# extract marker data	
mydata <- alldata[, 50:ncol(alldata)]	
D <- dist(mydata)	

Let’s	perform	the	multidimensional	scaling	method	based	on	the	calculated	distance	matrix.	

# perform MDS	
res.mds <- cmdscale(D, k = 10, eig = T)	
# res.mds	

Eigenvalues	are	calculated	as	in	principal	component	analysis.	In	addition,	the	contribution	
and	the	cumulative	contribution	can	be	calculated	based	on	the	eigenvalues.	

# eigenvalues and contributions	
res.mds$eig[1:10]	

##  [1] 115029.059  40849.407  20648.953  11530.683  10069.314   6591.745	
##  [7]   4996.271   4819.066   3932.298   3581.676	

res.mds$eig[1:10] / sum(res.mds$eig)	

##  [1] 0.310125555 0.110132562 0.055670871 0.031087446 0.027147501 0.0177717
58	
##  [7] 0.013470260 0.012992505 0.010601722 0.009656423	

cumsum(res.mds$eig[1:10]) / sum(res.mds$eig)	

##  [1] 0.3101256 0.4202581 0.4759290 0.5070164 0.5341639 0.5519357 0.5654060	
##  [8] 0.5783985 0.5890002 0.5986566	

barplot(res.mds$eig[1:10])	



	

	

30	

30	

	

According	to	the	principal	component	analysis	rule	based	on	the	bar	chart	of	the	eigenvalues	
in	the	above	figure,	it	is	considered	that	the	variation	contained	in	the	data	should	be	
represented	by	four	dimensions.	

Now	let’s	draw	a	scatter	plot	that	shows	the	placement	in	4D	space.	

# draw the result of MDS	
subpop <- alldata$Sub.population	
op <- par(mfrow = c(1,2))	
plot(res.mds$points[,1:2], col = as.numeric(subpop))	
plot(res.mds$points[,3:4], col = as.numeric(subpop))	
legend(5, -10, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 0.5)	



	

	

31	

31	

	

par(op)	

Let’s	draw	a	three-dimensional	scatter	plot	as	well	as	principal	component	analysis.	

# draw the result of MDS with plotly	
df <- data.frame(subpop = subpop, res.mds$points[,1:4])	
plot_ly(data = df, x = ~X1, y = ~X2, z = ~X3, color = ~subpop, type = "scatte
r3d", mode = "markers")	
plot_ly(data = df, x = ~X2, y = ~X3, z = ~X4, color = ~subpop, type = "scatte
r3d", mode = "markers")	

Looking	at	the	results	of	multidimensional	scaling	seems	to	be	very	similar	to	the	results	of	
principal	component	analysis.	Let’s	calculate	the	correlation	between	the	coordinate	values	
and	the	principal	component	scores	obtained	by	multidimensional	scaling	method.	

## correlation between PC1-4 and scores in MDS	
cor(res.pca$x[,1:4], res.mds$points[,1:4])	

##              [,1]          [,2]          [,3]          [,4]	
## PC1 -1.000000e+00  6.392355e-15 -3.624340e-16  1.685324e-16	
## PC2  1.946379e-14  1.000000e+00  7.058496e-16 -2.099081e-16	
## PC3 -4.655895e-16  8.457081e-16 -1.000000e+00 -9.848098e-16	
## PC4 -4.493208e-16 -4.497497e-16  8.746548e-16 -1.000000e+00	

You	can	see	that	the	first	four	principal	components	(rows)	and	the	first	four	dimensions	of	the	
multidimensional	scaling	are	either	correlated	(-1	or	1)	with	each	other.	If	you	look	at	this	
result	from	a	slightly	different	point	of	view,	even	if	the	values	of	the	original	variable	are	not	
given,	the	Euclidean	distance	matrix	based	on	the	values	can	be	used	to	perform	the	same	
analysis	as	principal	component	analysis.	

Given	a	distance	matrix,	as	with	principal	component	analysis,	being	able	to	represent	sample	
variation	with	fewer	variables	is	one	of	the	most	useful	aspects	of	multidimensional	scaling.	I	
will	explain	this	point	with	a	slightly	specific	example.	In	the	second	lecture,	it	was	shown	that	
there	is	a	strong	relationship	between	principal	component	scores	(PC1-4)	representing	
genetic	background	and	plant	height	(Plant.height).	Using	the	multidimensional	scaling	
method,	it	is	possible	to	calculate	a	variable	with	the	same	variation	as	the	principal	



	

	

32	

32	

component	score	from	“the	relationship	between	accessions	(varieties	and	lines)”.	Based	on	
that,	You	can	check	whether	the	genetic	relationship	affects	the	plant	height.	In	other	words,	
whether	the	distance	relationship	samples	samples	is	related	to	the	variation	in	another	
characteristic	found	in	samples	by	combining	multidimensional	scaling	and	another	analysis	
(eg,	multiple	regression	analysis).	

Finally,	let’s	make	a	concrete	calculation	and	check	the	above-mentioned	points.	

# prepare data	
mydata <- data.frame(	
    plant.height = alldata$Plant.height,	
    res.mds$points[,1:4]	
    )	
mydata <- na.omit(mydata)	
# analyze data	
model <- lm(plant.height ~ ., data = mydata)	
anova(model)	

## Analysis of Variance Table	
## 	
## Response: plant.height	
##            Df Sum Sq Mean Sq F value    Pr(>F)    	
## X1          1  31015 31015.5  97.663 < 2.2e-16 ***	
## X2          1   4351  4351.2  13.701 0.0002496 ***	
## X3          1  11370 11370.2  35.803 5.494e-09 ***	
## X4          1   5598  5597.8  17.627 3.429e-05 ***	
## Residuals 343 108929   317.6                      	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

plot(mydata$plant.height, predict(model))	



	

	

33	

33	

	

Formulation of multidimensional scaling method 

Here,	let’s	consider	the	problem	of	finding	the	arrangement	of	𝑛	samples	distributed	in	𝑞-
dimensional	space	from	the	“Euclidean	distance	between	samples”.	Now,	the	coordinates	
where	the	arrangement	of	the	ith	sample	in	qdimensional	space	is	represented	by	a	column	
vector	

𝑥! = (𝑥!$, . . . , 𝑥!))# 	

At	this	time,	using	an	𝑛 × 𝑞	matrix	𝐗 = (𝐱$, . . . , 𝐱&)# 	obtained	by	bundling	and	transposing	
column	vectors	of	𝑛	samples,	a	matrix	that	has	an	inner	product	of	column	vectors	of	n	
samples	as	tis	element	can	be	expressed	as	

𝐁 = 𝐗𝐗# 	

Here,	the	(𝑖, 𝑗)	element	of	the	inner	product	matrix	𝐁	is	the	inner	product	of	the	𝑖-th	𝑗-th	
sample.	That	is	

𝑏!% = 𝐱!#𝐱% =3𝑥!*

)

*'$

𝑥%*	

At	this	time,	the	Euclidean	distance	𝑑!% 	between	the	𝑖-th	sample	and	the	𝑗-th	sample	can	be	
expressed	as	



	

	

34	

34	

𝑑!%" =3(
)

*'$

𝑥!* − 𝑥%*)"	

=3𝑥!*"
)

*'$

+3𝑥%*"
)

*'$

− 23𝑥!*

)

*'$

𝑥%*	

= 𝑏!! + 𝑏%% − 2𝑏𝑖𝑗	

If	the	center	of	gravity	of	𝐱	is	located	at	the	origin,	then	

3𝑥!*

&

!'$

= 0	

If	bij	is	summed	over	𝑖	and	𝑗,	

3𝑏!%

&

!'$

=33𝑥!*

)

*'$

&

!'$

𝑥%* =3𝑥%*

)

*'$

3𝑥!*

&

!'$

= 0	

Therefore,	the	followings	hold.	

3𝑑!%"
&

!'$

=3(
&

!'$

𝑏!! + 𝑏%% − 2𝑏𝑖𝑗) =3𝑏!!

&

!'$

+ 𝑛𝑏%% 	

3𝑑!%"
&

%'$

=3(
&

%'$

𝑏!! + 𝑏%% − 2𝑏𝑖𝑗) =3𝑏%%

&

%'$

+ 𝑛𝑏!! =3𝑏!!

&

!'$

+ 𝑛𝑏!! 	

33𝑑!%"
&

%'$

&

!'$

=33(
&

%'$

&

!'$

𝑏!! + 𝑏%% − 2𝑏𝑖𝑗) = 𝑛3𝑏!!

&

!'$

+ 𝑛3𝑏%%

&

%'$

= 2𝑛3𝑏!!

&

!'$

	

Using	the	above	equation,	the	following	relationship	holds.	

𝑏!% = −
1
2 (𝑑!%

" − 𝑑!." − 𝑑.%" + 𝑑..")	

(6)	

here,	

𝑑!." =
1
𝑛3𝑑!%"

&

%'$

=
1
𝑛3𝑏!!

&

!'$

+ 𝑏!! 	

𝑑.%" =
1
𝑛3𝑑!%"

&

!'$

=
1
𝑛3𝑏!!

&

!'$

+ 𝑏%% 	

𝑑.." =
1
𝑛"33𝑑!%"

&

%'$

&

!'$

=
2
𝑛3𝑏!!

&

!'$

	

Equation	(6)	means	that	if	the	distance	matrix	𝐃 = {𝑑!%}	is	given,	the	inner	product	matrix	𝐁	
can	be	calculated	reversely	from	𝐃.	The	calculation	procedure	is	as	follows.	First	calculate	the	



	

	

35	

35	

squares	𝑑!%" 	of	each	element	of	the	distance	matrix,	and	then	calculate	its	row	mean	𝑑!.",	column	
mean	𝑑.%" ,	and	total	mean	𝑑..".	Finally,	the	inner	product	matrix	𝐁	is	obtained	by	computing	𝑏!% 	
according	to	equation	(6).	

Once	the	inner	product	matrix	𝐁	is	obtained,	it	suffices	to	find	𝐗	that	satisfies	𝐁 = 𝐗𝐗# .	To	find	
𝐗,	perform	a	spectral	decomposition	of	matrix	𝐁,	as	shown	below.	

Suppose	the	matrix	𝐁	is	a	symmetric	matrix	with	𝑞	eigenvalues	and	eigenvectors.	That	is,	

𝐁𝐮$ = 𝜆$𝐮$, . . . , 𝐁𝐮) = 𝜆)𝐮)	

Now,	bundling	these	expressions,	we	obtain	

𝐁(𝐮𝟏, . . . , 𝐮𝐪) = (𝐮𝟏, . . . , 𝐮𝐪) _
𝜆$ 0

⋱
0 𝜆)

a	

Let	𝐔 = (𝐮𝟏, . . . , 𝐮𝐪)	and	𝚲 = 𝑑𝑖𝑎𝑔(𝜆$, . . . , 𝜆))	where	𝑑𝑖𝑎𝑔(𝜆$, . . . , 𝜆))	be	a	diagonal	matrix	with	
diagonal	elements	𝜆$, . . . , 𝜆) ,	then	the	above	equation	becomes	

𝐁𝐔 = 𝐔𝚲	

(7)	Since	the	eigenvectors	are	unit	vectors	(𝐮!#𝐮! = 1)	and	mutually	orthogonal	(𝐮!#𝐮% = 0),	the	
matrix	𝐔	is	

𝐔#𝐔 = 𝐈 ⇔ 𝐔# = 𝐔.$ ⇔ 𝐔𝐔# = 𝐈	

(8)	

That	is,	the	inverse	of	the	matrix	𝐔	is	simply	the	transpose	of	𝐔.	

From	equations	(7)	and	(8),	the	matrix	𝐁	is	

𝐁 = 𝐔𝚲𝐔# 	

Setting	𝐮!∗ = 𝜆!
$/"𝐮! ,	the	above	equation	is	

𝐁 = 𝐔∗𝐔∗# 	

where	𝐔∗ = (𝐮$∗ , . . . , 𝐮)∗ ).	

Therefore,	𝐗	that	satisfies	𝐁 = 𝐗𝐗# 	is	

𝐗 = 𝐔𝚲$/"	

where	𝚲$/" = 𝑑𝑖𝑎𝑔(𝜆$
$/", . . . , 𝜆)

$/").	

Thus,	the	classical	multidimensional	scaling	method	eventually	becomes	the	eigenvalue	
problem	of	the	inner	product	matrix	𝐁	obtained	from	the	distance	matrix	𝐃.	And	by	solving	the	
eigenvalue	problem,	we	can	find	the	placement	of	𝑛	samples	in	the	𝑞-dimensional	space.	

Now	let’s	analyze	using	the	classical	multidimensional	scaling	method	without	using	the	
function	cmdscale	in	the	procedure	described	above.	

First,	prepare	the	data.	As	before,	we	use	marker	genotype	data.	Calculate	the	Euclidean	
distance	using	the	function	dist	and	prepare	the	distance	matrix	𝐃.	



	

	

36	

36	

#prepare data again	
mydata <- alldata[, 50:ncol(alldata)]	
D <- dist(mydata)	

First,	each	element	of	the	distance	matrix	𝐃	is	squared.	Next,	find	the	row	mean,	column	mean,	
and	total	mean	of	the	squared	elements.	Row	average	and	column	average	can	be	easily	
calculated	using	the	function	apply.	Finally,	calculate	the	inner	product	matrix	𝐁	according	to	
equation	(6).	The	code	of	R	is	as	follows.	

#obtain B matrix	
D2 <- as.matrix(D^2)	
D2i. <- apply(D2, 1, mean)	
D2.j <- apply(D2, 2, mean)	
D2.. <- mean(D2)	
B <- - 0.5 * (sweep(sweep(D2, 1, D2i.), 2, D2.j) + D2..)	

Performs	eigenvalue	decomposition	of	inner	product	matrix	B.	Also,	calculate	coordinate	
values	according	to	equation	(7).	

#eigenvalue decomposition of B matrix	
eig <- eigen(B)	
eval <- eig$values[1:10]	
evec <- eig$vectors[,1:10]	
points <- evec * rep(sqrt(eval), each = nrow(evec))	

Let’s	compare	it	with	the	result	calculated	using	the	function	cmdscale.	You	will	see	that	the	
results	are	in	agreement.	

# compare results	
head(points, 4)	

##             [,1]       [,2]       [,3]        [,4]       [,5]        [,6]	
## [1,]  20.7513541 -14.528382   0.326152   0.5387409 -0.2488285   2.6312328	
## [2,] -22.7959000  -2.141193  11.735408  -0.7558878 -0.8349865   0.8724051	
## [3,] -20.7507303  -1.412188 -10.140763   4.6532487  0.6355251   2.0224133	
## [4,]   0.4567869   1.313713  -9.419251 -23.2895091 -3.0974254 -11.0658283	
##            [,7]       [,8]       [,9]      [,10]	
## [1,]  2.3738573  2.4469507  0.7739924 -0.2665672	
## [2,] -8.4519348  4.1096465  1.4409389  0.1896848	
## [3,] -1.9286834 -0.6098694 -0.5289895 -1.8454303	
## [4,]  0.2631901  1.7704509 -0.1214236 -1.7151304	

head(res.mds$points, 4)	

##             [,1]       [,2]       [,3]        [,4]       [,5]        [,6]	
## [1,]  20.7513541 -14.528382   0.326152   0.5387409 -0.2488285   2.6312328	
## [2,] -22.7959000  -2.141193  11.735408  -0.7558878 -0.8349865   0.8724051	
## [3,] -20.7507303  -1.412188 -10.140763   4.6532487  0.6355251   2.0224133	
## [4,]   0.4567869   1.313713  -9.419251 -23.2895091 -3.0974254 -11.0658283	
##            [,7]       [,8]       [,9]      [,10]	
## [1,] -2.3738573  2.4469507  0.7739924 -0.2665672	
## [2,]  8.4519348  4.1096465  1.4409389  0.1896848	
## [3,]  1.9286834 -0.6098694 -0.5289895 -1.8454303	
## [4,] -0.2631901  1.7704509 -0.1214236 -1.7151304	

Let’s	draw	a	picture	last.	You	will	see	the	same	picture	as	Figure	15.	Let’s	check	it.	



	

	

37	

37	

# draw graph	
subpop <- alldata$Sub.population	
op <- par(mfrow = c(1,2))	
plot(points[,1:2], col = as.numeric(subpop))	
plot(points[,3:4], col = as.numeric(subpop))	
legend(5, -10, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 0.5)	

	

par(op)	

	  



	

	

38	

38	

Report assignment 
1. Principal	component	analysis	based	on	particle.number.per.plant,	particle.length,	

primary.particle.branch.number,	seed.number.per.particle,	and	florets.per.particle.	
Answer	whether	this	principal	component	analysis	should	be	done	based	on	the	
covariance	matrix	or	on	the	correlation	matrix.	

2. Perform	the	principal	component	analysis	in	1	and	draw	a	diagram	showing	the	
magnitude	of	the	variance	of	each	principal	component.	

3. How	many	principal	components	are	to	be	seletec	if	the	contribution	proportion	exceeds	
the	average	explanatory	power	per	original	variable	(i.e.,	if	the	number	of	variables	is	𝑞,	
the	contribution	propotion	exceeds	1/𝑞)?	

4. For	principal	component	analysis	in	1,	draw	a	scatter	plot	of	principal	component	scores	
between	the	first	and	second	principal	components.	In	doing	so,	color	each	
subpopulation	based	on	the	variable	Sub.population.	

5. Based	on	the	figure	in	4,	answer	which	kind	of	valeus	(large	or	small,	positive	or	negative	
etc.)	of	the	first	and	second	principal	component	scores	TEJ	and	TRJ	take.	

6. Draw	a	biplot	for	the	first	and	second	principal	components.	
7. Calculate	the	factor	loadings	of	the	first	and	second	principal	components	and	draw	a	

figure	of	the	factor	loadings.	
8. Based	on	the	figures	in	6	and	7,	answer	for	each	trait	whether	each	trait	has	a	large	or	

small	value	when	the	first	principal	component	has	a	large	value.	

Submission	method:	

• Create	a	report	as	a	pdf	file	and	submit	it	to	ITC-LMS.	
• When	you	cannot	submit	your	report	to	ITC-LMS	with	some	issues,	send	the	report	to	

report@iu.a.u-tokyo.ac.jp	
• Make	sure	to	write	the	affiliation,	student	number,	and	name	at	the	beginning	of	the	

report.	
• The	deadline	for	submission	is	May	15th.	


