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 Primer of Biostatistics 
The 3rd Lecture 

 
Hiroyoshi Iwata 

aiwata@mail.ecc.u-tokyo.ac.jp 
 
<Principal component analysis> 
Experiments in agriculture and life sciences often measure multiple 
characteristics of the same samples. For example, in field trials of crops, 
various traits related to yield are examined simultaneously, even for the 
purpose of yield assessment. It is often the case that you can discover some 
kind of knowledge by drawing and viewing scatter plots of the multiple 
characteristics measured simultaneously. However, if the number of 
characteristics measured is large, it will be difficult to grasp the variation of 
data with a scatter plot. The number of dimensions that humans can 
intuitively grasp using the scatter plot is at most several dimensions, and it 
is not easy to grasp the variation of data when there are more than 10 
measured characteristics. Principal component analysis described in this 
lecture is a method for summarizing variation contained in multidimensional 
data into low-dimensional features (i.e., principal component scores) without 
reducing the amount of information as much as possible. For example, the 
variation summary included in the marker genotype data shown as an 
example in this lecture shows that data in 1,311 dimensions can be 
summarized in four dimensions. Principal component analysis is a very 
effective method to efficiently extract the information contained in variables 
when the number of variables is large. 
 
In this lecture, we will use the rice dataset (Zhao et al. 2011, Nature 
Communications 2: 467) as an example. In this lecture, we will also use 
marker genotype data (RiceDiversityGeno.csv) as well as line (accession) data 
(RiceDiversityLine.csv) and phenotypic data (RiceDiversityPheno.csv). The 
the marker genotype data is the genotypes of 1,311 SNPs that Zhao et al. 
(2010, PLoS One 5: e10780) used in their analysis. All data are based on the 
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data downloaded from the Rice Diversity web page 
http://www.ricediversity.org/. As for marker data, missing value was imputed 
by using the software fastPHASE (Scheet and Stephens 2006, Am J Hum 
Genet 78: 629). 
 
Load three types of data and combine them. 

 

 
Analyze the variation of panicle length and flag leaf length in varieties and 
lines included in rice germplasm by principal component analysis. First, the 
data of both traits are extracted from all data (alldata). Then, samples which 
have at least one missing value among the data of both traits are excluded. 

 

 
Let's check the variation of panicle length and flag leaf length with a scatter 

> line <- read.csv("RiceDiversityLine.csv")  
  # accession (line) data 
> pheno <- read.csv("RiceDiversityPheno.csv") 
  # phenotypic data 
> geno <- read.csv("RiceDiversityGeno.csv") 
  # marker genotype data 
> line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID") 
  # combine line and pheno 
> alldata <- merge(line.pheno, geno, by.x = "NSFTV.ID", by.y = "NSFTVID") 
  # combine line.pheno and geno 

> mydata <- data.frame( 
  panicle.length  = alldata$Panicle.length, 
  leaf.length = alldata$Flag.leaf.length 
  ) 
 # Extract Panicle.length and Flag.leaf.length  
> mydata 
（omitted） 
> missing <- apply(is.na(mydata), 1, sum) > 0 
 # is.na is a function for check whether elements are NA or not  
 # sum of this values becomes the number of NAs in a sample 
 # missing is a vector which contains a vector of T or F 
 # if a sample has missing, the corresponding element becomes T 
> mydata <- mydata[!missing, ] 
 # remove samples which have missing data 
> mydata 
（omitted） 
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plot. 

 
 

 
Figure 1. The relationship between panicle length and flag leaf length in 

341 accessions of rice germplasm 
Both lengths are measured in cm 

 
Look at the scatter plot. When one trait becomes large, the other tends to also 
become large. Calculate the variance-covariance matrix and correlation 
matrix of both traits and confirm it numerically. 

 
Both the correlation and the covariance have positive values. Thus, we can 
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> plot(mydata)  # draw the scatter plot 
> lim <- range(mydata)  # set range of values in both variables 
> plot(mydata, xlim = lim, ylim = lim) 
   # draw the plot with the same range for x and y 
 

> cov(mydata)   # variance-covariance matrix 
               panicle.length leaf.length 
panicle.length       12.67168    11.57718 
leaf.length          11.57718    33.41344 
> cor(mydata)   # correlation matrix 
               panicle.length leaf.length 
panicle.length       1.000000    0.562633 
leaf.length          0.562633    1.000000 
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confirm that both tend to vary together. 
 
In order to simplify the following calculations and explanations, each trait is 
normalized to be zero on average (the average is subtracted from the original 
variable). 

 
Note that scaling the variables does not change the relationship between the 
variables represented by the variance-covariance matrix and the correlation 
matrix. 

 
Figure 2. Panicle length and flag leaf length normalized so that their means 
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> mydata <- sweep(mydata, 2, apply(mydata, 2, mean)) 
 # calculate column means and subtract them from the columns 
> summary(mydata) 
（omitted） 
> cov(mydata)    
               panicle.length leaf.length 
panicle.length       12.67168    11.57718 
leaf.length          11.57718    33.41344 
> cor(mydata)    
               panicle.length leaf.length 
panicle.length       1.000000    0.562633 
leaf.length          0.562633    1.000000 
> lim <- range(mydata)   
> plot(mydata, xlim = lim, ylim = lim) 
> abline(h = 0, v = 0)  # draw the lines of x = 0 and y = 0 
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are equal to 0  
  
Let's perform principal component analysis and plot the obtained principal 
component scores. 

 

 
Figure 3. The horizontal axis is the first principal component (PC1) score, 

and the vertical axis is the second principal component (PC2) score 
 
Let's check the relationship between principal component scores and 
original variables by drawing a scatter diagram side by side. 
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> res <- prcomp(mydata) # perform principal component analysis 
> lim <- range(res$x) # extract principal component scores as res$x 
> plot(res$x, xlim = lim, ylim = lim) # draw the plot of scores 
> abline(h = 0, v = 0)   
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Figure 4. (left) original variable, (right) principal component score 

 
The side-by-side comparison of the principal component scores and the 
original variables shows that the principal component scores have the 
rotation (and inversion) of the original variables. Principal component 
analysis is a method for representing the variation of the original variables 
with new variables with as few dimensions as possible. For example, the 
horizontal axis in the right figure expresses the variation of the two 
variables of panicle length and flag leaf length as the variation of one new 
variable (i.e,, the first principal component). It can be seen that the first 
principal component alone can explain most of the variation of the original 
variables. In addition, the scores of the second principal component 
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> op <- par(mfrow = c(1,2)) # par is a function setting graph parameters 
 # mfrow = c(1,2) means draw graphs in the 1 row and two culums format 
> lim <- range(mydata) 
> plot(mydata, xlim = lim, ylim = lim) 
> abline(h = 0, v = 0) 
> lim <- range(res$x) 
> plot(res$x, xlim = lim, ylim = lim) 
> abline(h = 0, v = 0) 
> par(op) # reset the graph parameters 
 # op is the parameters before we set them in the first line. 
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represents the variation that could not be explained by the first principal 
component. 
 
Now let's check how much each principal component actually explains the 
variations.

 
It can be seen that the first principal component accounts for 83.7% of the 
total variation, and the second principal component accounts for the 
remaining 16.3%. That is, it can be seen that 80% or more of the variation of 
panicle length and flag leaf length can be represented by one variable (first 
main component). 
 
Let's look at the results in more detail. 

 
Standard deviations represent the standard deviation of the first and second 
principal components which are new variables. In addition, Rotation 
represents a unit vector representing the orientation of the axes of the first 
and second principal components (note that these unit vectors are called 
eigenvectors, as will be described later). 
 
In addition, the results mentioned above can also be retrieved separately as 
follows. 

> summary(res)   # summary of PCA 
Importance of components: 
                          PC1    PC2 
Standard deviation     6.2117 2.7385 
Proportion of Variance 0.8373 0.1627 
Cumulative Proportion  0.8373 1.0000 

> res   # the object which has the result of PCA 
Standard deviations: 
[1] 6.211732 2.738524 
 
Rotation: 
                      PC1        PC2 
panicle.length -0.4078995 -0.9130268 
leaf.length    -0.9130268  0.4078995 
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Let's draw graphs for the result of principal component analysis. 

 

 

Fig. 5 (left) Principal component variance (eigenvalues) 
(Right) Biplot representing the relationship between principal component 

scores and variables 
 
The left graph showed the variance of the principal component scores, which 
is the square of the standard deviation of the principal component (note that 
the variance of the principal component score is the eigenvalue of the 
variance covariance matrix). The right graph is a biplot that shows the 
relationship between principal component scores and variables. Looking at 
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> res$sdev   # standard deviation of PC scores 
[1] 6.211732 2.738524 
> res$rotation   # eigenvectors 
                      PC1        PC2 
panicle.length -0.4078995 -0.9130268 
leaf.length    -0.9130268  0.4078995 

> op <- par(mfrow = c(1,2)) 
> plot(res)  # variance (eigenvalues) of PCs 
> biplot(res)  
# biplot which shows relationship between PCs and original variables 
> par(op) 
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the biplot, both the flag leaf length (leaf. Length) and the panicle length 
(panicle. Length) have arrows pointing to the left, and both traits have large 
values for the first principal component (the horizontal axis). Samples that 
have smaller scores for the component have larger values in both traits. 
That is, the first principal component can be interpreted as a variable that 
represents "size". On the other hand, the arrow of the flag leaf length is 
(slightly) upward, the arrow of the panicle length is downward. A sample 
with larger flag leaf length has a larger value, while a sample with large 
panicle length has a smaller value. That is, it can be interpreted that the 
second principal component is a variable that represents the "ratio" of the 
length of the flag leaf and the panicle length. The details about the biplot 
will be explained again later.  
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<Formulation of principal component analysis> 
Here, I will outline the formulation of principal component analysis, using 
the two-dimensional data mentioned earlier as an example. 
 
First, let us consider that the variation of the two variables of panicle length 
and flag leaf length is represented by one new variable. The orientation of 
the axis representing this new variable is tentatively assumed as 

 here. The value of the new variable corresponds to the position 
of the foot of the perpendicular line from this data point to this axis. That is, 
the red line of the figure drawn below is the axis that represents the new 
variable, the gray line is the perpendicular line from the data point to the 
new axis, and the green + is the foot of the perpendicular line. The position 
of the foot of this perpendicular is the value of the new variable. 

 

(1 / 2, 1 / 2)

> lim <- range(mydata) 
> plot(mydata, xlim = lim, ylim = lim) # draw a scatter plot 
> abline(h = 0, v = 0)   # draw x and y axes 
> u.temp <- c(1 / sqrt(2), 1 / sqrt(2)) # the new variable 
> abline(0, u.temp[2] / u.temp[1], col = "red")  # draw new axis 
> score.temp <- as.matrix(mydata) %*% u.temp   # calculate the inner product 
> x <- score.temp * u.temp[1]  # x coordinate of the foot 
> y <- score.temp * u.temp[2]  # y coordinate of the foot 
> segments(x, y, mydata$panicle.length, mydata$leaf.length, col = "gray") 
     # draw segments with gray 
> points(x, y, pch = 4, col = "green") # draw foots with green 
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Figure 6. Variation of two variables represented by the temporarily set new 

variable axis 
 
Now, let's focus on one sample and examine the relationship between the 
value of the original variable and the value of the new variable in more 
detail. Here, let's draw a figure to pay attention to one sample that has the 
longest flag leaf length.
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> id <- which.max(mydata$leaf.length)  
# find the order of the sample which has largest leaf length 

> arrows(0, 0,      # starting points of arrows 
 mydata$panicle.length[id], mydata$leaf.length[id],  # end points 
 col = "purple")    # colors of arrows 
> arrows(x[id], y[id],  
 mydata$panicle.length[id], mydata$leaf.length[id],  
 col = "pink") 
> arrows(0, 0, x[id], y[id], col = "blue") 
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Figure 7. Original variable (vector of purple arrows) and new variable 

(vector of blue arrows) 
 

Now, if the original variable is represented by a new variable as shown in 
Figure 7, the information indicated by the pink arrow vector will be lost. 
Now, assuming that the vector representing the original variable as , the 
vector representing the new variable as , and the vector representing the 
lost information as , the square of the variation of the original variable is 

                     (1) 

That is, the square of the variation of the original variable can be divided 
into the square of the variation of the new variable and the square of the 
variation that is lost in the new variable. This means that the minimization 
of lost information is synonymous with the maximization of the variability 
of new variables. 
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How can we find an axis that maximizes the variability of the new 
variables? Consider a vector, , that determines the orientation of the axis, 
and seek that maximizes the variation of the new variable. Since there are 
infinite possibilities when we consider vectors of various sizes, let the size of 
vector size as 1 (unit vector) here. That is, 

                         (2) 
The variance of the value of the new variable  under this condition 

                             (3) 

We will maximize this value.  is the position of the foot of the 
perpendicular, and the inner product of  and  

                           (4) 
Note that the relationship with in equation (1) is 

 

 
To maximize Equation (3) under the condition of Equation (2), use the 
method of Lagrange's undetermined multipliers. That is, 

 

First, partially differentiate the above equation with  and . 

 

The above formula can be arranged as 

 

If the above two expressions are expressed using a matrix 

u1
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Tu1 = u11
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Here, note that in the portion from the top of the left side to the matrix, the 
diagonal components represent variances, while the nondiagonal component 
are covariances. Now, let the variance-covariance matrix be  and the 
vector representing the orientation of the axis be  

                                 (5) 
 
For the equation (5),  is a self-evident solution, but is not the solution 
we are going to solve. Finding a solution for the matrix , except for which 
Eq. (5) holds, is called the eigenvalue problem. We call the vector  as an 
eigenvector of   and λ as its eigenvalues. 
 
To summarize the results, "to find a new variable that best describes the 
variation of the original variable" eventually corresponds to "to find the 
variance-covariance matrix of the original variable and find its first 
eigenvector". 
 
Equation (5) can be rewritten as follows. 

 
The determinant of the matrix representing the coefficients of the above 
equation must be 0 in order for this equation to have a solution other than 

. That is, 
 

This equation is called an eigen (or characteristic) equation. 
 
Here, although the case where the number of variables is two has been 
described as an example, in general, if there are m variables, then  is an 
m × m variance-covariance matrix. If the matrix  is an m × m symmetric 
matrix (the variance-covariance matrix is always a symmetric matrix), 
has m real eigenvalues  and the corresponding eigenvectors 
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, which are unit vectors in which all elements are real numbers and 
orthogonal to each other. Now, if eigenvectors are rearranged in descending 
order of eigenvalues ( ),  becomes eigenvectors of the 
first, ..., m-th principal components. 
 
Let's perform principal component analysis according to the calculation 
procedure mentioned above. First, calculate the variance-covariance matrix 

. 

 
 
Next, perform eigenvalue decomposition of the variance-covariance matrix. 
We use the function eigen for eigenvalue decomposition. 

 

Eigenvalue decomposition yields eigenvalues (eigenvalues), , and 

eigenvectors (eigenvectors), . 
 

u1,...,um

λ1 ≥ ... ≥ λm u1,...,um

V

λ1,λn

u1,un

> cov <- var(mydata) # calculate the covariance matrix 
> cov 
               panicle.length leaf.length 
panicle.length       12.67168    11.57718 
leaf.length          11.57718    33.41344 

> eig <- eigen(cov)  # eigenvalue decomposition 
> eig   # eigenvalues and eigenvectors are obtained 
$values 
[1] 38.585610  7.499513 
 
$vectors 
          [,1]       [,2] 
[1,] 0.4078995 -0.9130268 
[2,] 0.9130268  0.4078995 
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Standard deviations are the square root of the eigenvalues. This is because 
the variance of the new variables (called principal component scores) is 
same as the eigenvalue, as described later. In addition, rotation is 
represented by eigenvectors, and both results are identical except for the 
difference between positive and negative. The sign of the coefficient depends 
on which side of the axis is a positive value, but in some cases it may be 
upside down because there is no rule to uniquely determine it. In the 
present result, the result of using the function prcomp and the result of 
using the function eigen are opposite in the positive / negative of the first 
principal component score. 
 
Now let's calculate the value of the new variable, i.e., the principal 
component score. Principal component scores can be calculated using 
equation (4). For example, the principal component score of the first sample 
can be calculated as follows: 

 
 
To calculate principal component scores for all samples and all principal 
components at once: That is, it is calculated as the product of the matrix of 
eigenvectors and the data matrix.  

> res <- prcomp(mydata) 
> res 
Standard deviations: 
[1] 6.211732 2.738524 
 
Rotation: 
                      PC1        PC2 
panicle.length -0.4078995 -0.9130268 
leaf.length    -0.9130268  0.4078995 
> sqrt(eig$values) 
[1] 6.211732 2.738524 

> mydata[1,]   # the data of the first sample 
  panicle.length leaf.length 
1      -3.995677   -2.221425 
> eig$vectors[,1]   # the eigen vector of the first PC 
[1] 0.4078995 0.9130268 
> mydata[1,1] * eig$vectors[1,1] + mydata[1,2] * eig$vectors[2,1] 
[1] -3.658055 
> res$x[1,1] # compare with the result of function prcomp 
[1] 3.658055 
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The obtained principal component scores and the principal component 
scores obtained using the function prcomp are identical except for the 
positive / negative of the first principal component scores (the positive / 
negative being reversed is the positive / negative as described above). 
 
Let's examine the variance and covariance of principal component scores. 
Compares the elements of this matrix with the eigenvalues. 

 

The above results show two important points. One is that the covariance of 
the first principal component and the second principal component is zero. It 
turns out that there is no redundancy in both components. The other is that 
the variance of the principal component scores matches the eigenvalues of 
the principal components. This relationship can be derived as follows: 
 

   

1
n −1

zji
2

i=1

n

∑

= 1
n −1

z j
Tz j =

1
n −1

(Xu j )
T (Xu j ) =

1
n −1

u j
TXTXu j

= u j
TVu j 

1
n −1

XTX = V⎛
⎝⎜

⎞
⎠⎟

= λ ju j
Tu j Vu j = λ ju j( )

= λ j u j
Tu j =1( )

> score <- as.matrix(mydata) %*% eig$vectors 
> head(score) 
       [,1]       [,2] 
1 -3.658055  2.7420420 
（以下省略） 
> head(res$x) 
        PC1        PC2 
1  3.658055  2.7420420 
（以下省略） 
 

> var(score) 
             [,1]         [,2] 
[1,] 3.858561e+01 6.763202e-16 
[2,] 6.763202e-16 7.499513e+00 
> eig$values 
[1] 38.585610  7.499513 
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where  is the j th principal component score of the i th sample. 
 is a column vector consisting of the scores of all samples of 

the j-th principal component, and  is a data matrix bundling 
column vectors  consisting of the original m variables of the 
i-th sample. Because of this relationship, as mentioned earlier, the standard 
deviation of the principal component scores in the result of the function 
prcomp coincides with the square root of the eigenvalue in the result of the 
function eigen. 
 
Let's check another important relationship. The sum of the eigenvalues (ie, 
the sum of the variances of the principal components) matches the sum of 
the variances of the original variables, as shown below. 

 

 
Therefore, calculating the ratio of the eigenvalue of the j th principal 
component to the sum of the eigenvalues of all principal components, is 
same as calculating the ratio of the variance of jth principal component to 
the sum of the variances of the original variables. This ratio is called the 
contribution of the j-th principal component. Also, the sum of contributions 
from the first principal component to the j-th principal component is called 
the cumulative contribution of the j-th principal component. Contribution 
and cumulative contribution provide a good basis for determining the 
number of effective (necessary) components, as discussed later. Now let's 
calculate the contribution and the cumulative contribution of principal 
coponents. 

 

z ji
z j = zi1,..., zin( )T

X = x1,...,xn( )T

x1 = x11,..., x1m( )T

> sum(eig$values) 
[1] 46.08512 
> sum(diag(cov)) 
[1] 46.08512 

> eig$values / sum(eig$values) 
[1] 0.8372682 0.1627318 
> cumsum(eig$values) / sum(eig$values) 
[1] 0.8372682 1.0000000 
> summary(res) 
（結果は省略） 
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You can see that the first principal component accounts for 83.7% of the 
total variation (sum of the variance of the original variables). This is the 
same as the result shown when displaying the result of the function prcomp 
with the function summary.  
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<Principal Component Analysis Based on Correlation Matrix> 
So far, we have discussed principal component analysis based on the 
variance-covariance matrix. This method cannot be applied when the 
variables include different measurement scales. This is because it is difficult 
to give meaning to covariance between variables with different 
measurement scales. 
For example, when considering the covariance between two variables of 
length and number, the size of the covariance is different when measuring 
the length in units of meter and when measuring in units of centi-meter. 
(The latter will be 100 times larger). Therefore, the result of principal 
component analysis based on the variance-covariance matrix of these two 
variables changes depending on the unit of measure of length. 
Also, for example, even when both of two variables are measured in length, 
if one is very large compared to the other, the larger variable mainly 
determines the magnitude of covariance. In principle component analysis, 
results are obtained that depend mainly on the variation in the larger 
variable. 
The problem above is mainly come from the estimate of covariance has the 
following form: 

 

 
Now let's calculate and check the problem specifically. First, let's draw a 
scatter diagram by extracting the data of panicle length (Panicle.length) and 
the number of florets in a single panicle (Florets.per.panicle). The panicle 
length is a variable measured in centi-meter (cm), and the number of florets 
in a single panicle is a variable measured as a number. 

 

(xi − x )(yi − y )i

n∑ (n −1)

> mydata <- data.frame(  # extract two traits 
  panicle.length  = alldata$Panicle.length, 
  panicle.florets = alldata$Florets.per.panicle 
  ) 
> missing <- apply(is.na(mydata), 1, sum) > 0     

# if a sample missing, the corresponding element becomes T 
> mydata <- mydata[!missing, ] # remove samples with missing data 
> plot(mydata) 
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Figure 8. Relationship between panicle length (horizontal axis) and florets 

number per panicle (vertical axis) 
There is a relation that one becomes larger and the other becomes larger 

 
Next, let's do principal component analysis based on the variance-
covariance matrix. The point to note is that the next analysis is an 
"incorrect analysis example".

 
The analysis results show that the first principal component is a variable 
that mainly explains panicle length from eigenvectors. 
 
Let’s see what happens if the panicle length is measured in meters (the next 
analysis is also an "incorrect analysis example").  
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> res <- prcomp(mydata) 
> res 
Standard deviations: 
[1] 3.5623427 0.2901551 
 
Rotation: 
                       PC1         PC2 
panicle.length  0.99926174 -0.03841834 
panicle.florets 0.03841834  0.99926174 
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It turns out that the first principal component is a variable that mainly 
explains the variation in the number of florets. In other words, the result of 
the principal component analysis changes completely because the 
measurement scale is different. 
 
How can we solve this problem? One way is to perform the principal 
component analysis after scaling the variables to mean 0 and variance 1 
respectively. By performing normalization in this way, principal component 
analysis can be performed without being influenced by the difference in 
magnitude of variation in each variable. Let's actually calculate it. 

 
As a result of analysis, it can be seen that the first principal component is a 
variable that explains that both variables become large, and the second 
principal component is a variable that explains that the other becomes 
smaller when one becomes larger. 
 

> mydata$panicle.length <- mydata$panicle.length / 100 
         # convert from the cm unit to the m unit 
> res.2 <- prcomp(mydata)  # PCA with the m unit 
> res.2     
Standard deviations: 
[1] 0.32097715 0.03220266 
 
Rotation: 
                       PC1         PC2 
panicle.length  0.04750446 -0.99887103 
panicle.florets 0.99887103  0.04750446 
 

> mydata.scaled <- scale(mydata)  
  # make variables have their mean 0 and their variance 1 
> var(mydata.scaled) # covariance becomes 1 
                panicle.length panicle.florets 
panicle.length       1.0000000       0.4240264 
panicle.florets      0.4240264       1.0000000 
> res.scaled <- prcomp(mydata.scaled) # PCA with scaled data 
> res.scaled    
Standard deviations: 
[1] 1.1933258 0.7589292 
 
Rotation: 
                      PC1        PC2 
panicle.length  0.7071068 -0.7071068 
panicle.florets 0.7071068  0.7071068 
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Note that the variance-covariance matrix calculated between variables 
scaled in this way matches the correlation matrix calculated between the 
variables before scaling. Thus, in other words, instead of the eigenvalue 
decomposition of the variance-covariance matrix, the eigenvalue 
decomposition of the correlation matrix produces the same result. Let's 
confirm this using the function eigen. 

 

 
The prcomp function performs principal component analysis based on the 
correlation matrix when the option scale = T is specified. 

 

In fact, principal component analysis based on a correlation matrix of two 
variables always calculates the same eigenvector. Also, if the correlation 
between two variables is r, the eigenvalues are always 1 + r and 1-r. You can 
understand the mechanism by looking at the formula shown below. 
 

> eigen(cov(mydata.scaled)) 
$values 
[1] 1.4240264 0.5759736 
 
$vectors 
          [,1]       [,2] 
[1,] 0.7071068 -0.7071068 
[2,] 0.7071068  0.7071068 
 
> eigen(cor(mydata)) 
（結果を省略） 

> res.scaled.2 <- prcomp(mydata, scale = T) 
> res.scaled.2 
Standard deviations: 
[1] 1.1933258 0.7589292 
 
Rotation: 
                      PC1        PC2 
panicle.length  0.7071068 -0.7071068 
panicle.florets 0.7071068  0.7071068 
> res.scaled 
（結果は省略） 
Rotation: 
                      PC1        PC2 
panicle.length  0.7071068 -0.7071068 
panicle.florets 0.7071068  0.7071068 
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Assuming that the correlation matrix between two variables is 

, λ making the eigen (characteristic) equation equal to 0 is 

 
It is obtained as a solution of 

 
When the eigenvalue is , the eigenvectors satisfy . 
That is, 

 

If you solve them 

 

Similarly, the eigenvectors  for the eigenvalue  can be obtained, 

. 

  

R = 1 r
r 1

⎛
⎝⎜

⎞
⎠⎟

R − λI = 0⇔ (1− λ)2 − r2 = 0

λ1 = 1+ r, λ2 = 1− r
λ1 Ru1 = λ1u1

u11 + ru12 = (1+ r)u11
ru11 + u12 = (1+ r)u12

u11 = u12 =
1
2
≈ 0.71

u2 λ2

u11 = − 1
2
, u12 =

1
2
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<Application to multivariate data> 
So far, I have explained the principle component analysis based on two 
examples of variables. However, in most cases where principal component 
analysis is actually used, data consisting of a large number of variables is 
often analyzed. Here, while analyzing data consisting of seven variables, we 
will explain how to determine the number of principal components and how 
to interpret the meaning of principal components. 
 
First, extract seven variables (leaf.length, leaf.width, plant.height, 
panicle.number, panicle.length, seed.length, seed.width).

 
 
Let's perform principal component analysis based on the correlation matrix.

 

> plot(res) 
> mydata <- data.frame( 
  leaf.length = alldata$Flag.leaf.length, 
  leaf.width  = alldata$Flag.leaf.width, 
  plant.height = alldata$Plant.height, 
 panicle.number = alldata$Panicle.number, 
  panicle.length = alldata$Panicle.length, 
  seed.length = alldata$Seed.length, 
  seed.width = alldata$Seed.width 
 ) 
> missing <- apply(is.na(mydata), 1, sum) > 0 
> mydata <- mydata[!missing, ] 

> res <- prcomp(mydata, scale = T) # 分散 1に基準化して主成分分析 
> summary(res) 
Importance of components: 
                          PC1    PC2    PC3     PC4    PC5     PC6     PC7 
Standard deviation     1.5626 1.2797 1.0585 0.77419 0.7251 0.64540 0.50854 
Proportion of Variance 0.3488 0.2339 0.1601 0.08562 0.0751 0.05951 0.03694 
Cumulative Proportion  0.3488 0.5827 0.7428 0.82844 0.9035 0.96306 1.00000 
> plot(res)  # 主成分得点の分散（固有値）の棒グラフを表示 
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Figure 9. Bar chart showing variance (eigenvalue) of principal component 
scores. Sum of eigenvalues equals to the number of variables in principal 

component analysis based on correlation matrix 
 

While seven principal components are calculated for data consisting of seven 
variables, how many principal components should be used to summarize the 
data? Although various methods have been proposed as methods for 
determining the number of effective principal components, here I present 
some simple rules. 
1. Adopt the number of principal components whose cumulative contribution 
exceeds a specified percentage. 70% to 90% are often used as a pre-defined 
percentage. 
2. Adopt a principal component whose contribution exceeds the average 
explanatory power per original variable. When the number of variables is q, 
a principal component whose contribution exceeds 1 / q is adopted. 
3. In the case of the correlation matrix, the above rule adopts the principal 
component whose "eigen value exceeds 1". However, this standard is often 
too strict. There is also a report that about 0.7 is appropriate. 
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4. In the graph of eigen values, use as the number of components the point 
that changes from abrupt change to gentle change. 
 
Assuming that the percentage determined based on the first rule is 80%, the 
first four principal components with a cumulative contribution of 82.8% are 
selected. Next, based on the second rule, the first three principal 
components whose contribution rate exceeds 1/7 = 14.3% are selected. This 
is the same with the third rule (However, if the eigenvalue is 0.7 or more, 
the first five principal components are selected). Finally, in the fourth rule, 
the eigenvalue decreases rapidly until the fourth principal component, and 
then decreases gradually. Therefore, the first four principal components are 
chosen. Combining the above, the first three or four principal components 
are considered to be the appropriate number of principal components. 
 
Let's draw a scatter plot of the first four principal components. In addition, 
let's color each subpopulation (Sub.population) in order to see the 
relationship with genetic structure.  

 

subpop <- alldata$Sub.population[!missing] 
# extract subpopulation information (make sure to remove missing data) 

> op <- par(mfrow = c(1,2)) # arrange graphs in 1 row and 2 columns 
> plot(res$x[,1:2], col = as.numeric(subpop))   # plot of PC1 and 2 
> plot(res$x[,3:4], col = as.numeric(subpop))   # plot of PC3 and 4 
> par(op) 
> df <- data.frame(subpop = subpop, res$x[,1:3]) 
> plot_ly(data = df, x = ~PC1, y = ~PC2, z = ~PC3, color = ~subpop, type = 
"scatter3d", mode = "markers") 
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Fig. 10. Scatter plot of the scores of the first to fourth principal components. 

It can be seen that there is a relationship between principal component 
scores and genetic background 

 
When you draw a scatter plot, you can see that the dots of the same color 
are plotted closely. This suggests that there is some relationship between 
principal component scores and genetic background. 
 
What kind of variation do the first four principal components capture? First, 
let's look at their eigenvectors. 

 

Looking at the eigenvectors, the first principal component is a positive value 
except for the number of panicles (panicle.number) and the width of the 
seed (seed.width), and it is a variable that explains the “size” excluding the 

-4 -2 0 2 4

-3
-2

-1
0

1
2

3

PC1

P
C
2

-3 -2 -1 0 1 2

-2
-1

0
1

2
PC3

P
C
4

> res$rotation[,1:4] 
                       PC1        PC2         PC3         PC4 
leaf.length     0.46468878 -0.0863622  0.33735685 -0.28604795 
leaf.width      0.26873998 -0.5447022  0.19011509 -0.36565484 
plant.height    0.43550572  0.2369710  0.35223063  0.55790981 
panicle.number -0.03342277  0.6902669  0.07073948 -0.15465539 
panicle.length  0.56777431  0.1140531  0.01542783  0.07533158 
seed.length     0.27961838 -0.2343565 -0.67403236  0.42404985 
seed.width     -0.34714081 -0.3086850  0.51615742  0.51361303 
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width of the seed. The second principal component shows that the number of 
panicles (panicle.number) has a relatively large weight. 
 
In this way, it is difficult to interpret the meaning of the main component 
based on the numerical values. To visualize it, draw a biplot graph. 

 

 
Fig. 11. Results of biplot of the first to fourth principal components 

 
The size and orientation of an arrow with a variable name indicates the 
relationship between each principal component and that variable. For 
example, from the left figure, samples which have large scores of the first 
principal component (for example, 174, 230, etc.) have larger values in plant 
height, panicle length, length of flag leaf. Among the variables whose length 
was measured, only the width of the seed has the opposite direction to the 
other variables, suggesting that the first principal component takes a 
smaller score when the seed width is larger. It can be seen that the number 
of panicles is not directed to the first principal component direction, 
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> op <- par(mfrow = c(1,2)) # arrange graphs with 1 row by 2 columns 
> biplot(res, choices = 1:2) # biplot between PC 1 and 2 
> biplot(res, choices = 3:4) # biplot between PC 3 and 4 
> par(op)   # reset graph parameters 
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suggesting that it is not involved in the first principal component. The third 
and fourth principal components can be interpreted in the same way. 
 
There is a statistic called as factor loading, which represents the relation 
between the original variable and the principal component. Factor loading is 
the correlation coefficient between the value of the original variable and the 
principal component score. When the absolute value of this correlation 
coefficient is close to 1, it indicates that the relationship is strong, while, 
when it is close to 0, it indicates that the relationship is weak or absent. 
 
Now let's calculate the factor loadings of the variables. 

 
 
Let's draw graphs for this result. The factor loading can be drawn in the 
following graphs because it fits in a circle of radius 1.

 

> factor.loadings <- cor(mydata, res$x[,1:4])  
# correlation between original variables and principal component scores 

> factor.loadings 
                       PC1        PC2         PC3         PC4 
leaf.length     0.72611038 -0.1105166  0.35710695 -0.22145439 
leaf.width      0.41992598 -0.6970483  0.20124513 -0.28308496 
plant.height    0.68050970  0.3032487  0.37285150  0.43192611 
panicle.number -0.05222553  0.8833255  0.07488083 -0.11973208 
panicle.length  0.88718910  0.1459523  0.01633103  0.05832068 
seed.length     0.43692427 -0.2999030 -0.71349267  0.32829357 
seed.width     -0.54243303 -0.3950201  0.54637516  0.39763215 

> theta <- 2 * pi * (0:100 / 100)  
> x <- cos(theta)    
> y <- sin(theta)    
> op <- par(mfrow = c(1,2))  
> plot(factor.loadings[,1:2], xlim = c(-1,1), ylim = c(-1,1), pch = 4) 
> text(factor.loadings[,1:2], rownames(factor.loadings), col = "red") 
> lines(x, y, col = "gray")  
> abline(v = 0, h = 0)   
> plot(factor.loadings[,3:4], xlim = c(-1,1), ylim = c(-1,1), pch = 4) 
> text(factor.loadings[,3:4], rownames(factor.loadings), col = "red") 
     
> lines(x, y, col = "gray")  
> abline(v = 0, h = 0) 
> par(op) 
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Figure 12. Factor loadings of the first to fourth principal components. The 
variables scattered closer to the circle have a stronger relationship with 

their principal components. Conversely, variables scattered near the origin 
have a weak relationship with their principal components 

 
In the principal component analysis based on the correlation matrix, the 
factor loading can also be calculated as follows.

 
 
Finally, let's perform principal component analysis of marker genotype data. 
First, we extract marker genotype data.

 

 
This data is data with a very large number of variables (1311 variables). 
Another feature is that the number of variables is greater than the number 
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> factor.loadings <- t(res$sdev * t(res$rotation))[,1:4] 
> factor.loadings 
（omitted） 
 

> mydata <- alldata[, 50:ncol(alldata)]  
> dim(mydata)     
[1]  374 1311 
> head(mydata)[,1:10] 
（omitted） 
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of samples. Let's use this data to perform principal component analysis 
based on the variance-covariance matrix. 

 

 
Figure 13. Bar chart of variance(eigenvalue) of principal component scores 

 
According to the fourth rule shown above, it can be judged that it is better to 
use the first four principal components (other rules cause the number of 
principal components to be too large). 
 
Let's draw a scatter plot of the first four principal components.
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> res.pca <- prcomp(mydata) # PCA based on variance covariance matrix 
> summary(res.pca)  # show result 
（結果は省略） 
> plot(res.pca)   # draw graphs 

> subpop <- alldata$Sub.population  # information about subpop 
> op <- par(mfrow = c(1,2))    
> plot(res.pca$x[,1:2], col = as.numeric(subpop))   
> plot(res.pca$x[,3:4], col = as.numeric(subpop))   
> legend(-10, 20, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 

0.5) 
     # add legend 
> par(op) 
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Figure 13. Results of principal component analysis based on marker 

genotype data 
 
Varieties can be divided into five groups (+1 group) based on the scores of 
the first to fourth principal components 
 
Let's also draw a 3D scatter plot.

 
 
Finally, let's compare PC1-4 included in alldata with the first to fourth 
principal components calculated this time.

 
Although there is not a perfect match because the calculation method is a 
little different, PC1-4 (rows 1-4) contained in alldata and the first to fourth 
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> df <- data.frame(subpop = subpop, res.pca$x[,1:4]) 
> plot_ly(data = df, x = ~PC1, y = ~PC2, z = ~PC3, color = ~subpop, type = 
"scatter3d", mode = "markers") 
> plot_ly(data = df, x = ~PC2, y = ~PC3, z = ~PC4, color = ~subpop, type = 
"scatter3d", mode = "markers") 

> cor(alldata[,c("PC1","PC2","PC3","PC4")], res.pca$x[,1:4]) 
             PC1         PC2         PC3         PC4 
PC1  0.988907541 -0.11988231 -0.03045304 -0.03589106 
PC2  0.006737731 -0.07579808  0.96846220 -0.18191250 
PC3 -0.129282100 -0.97046613 -0.08514082 -0.03141488 
PC4  0.012470575 -0.02915991  0.16366284  0.87422607 



 34 

principal components (rows 1-4) calculated this time provide almost the 
same information.  
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<Multidimensional scaling method> 
Although it is not possible to directly measure the characteristics of 
samples, it may be possible to assess differences in characteristics between 
samples. In other words, although the characteristics of samples cannot be 
measured as points in multi-dimensional space, it may be possible to 
measure distances among samples. 
For example, in population genetics, genetic distance between populations is 
calculated based on polymorphisms of genetic markers. In this case, 
although the distance between the populations is known, the genetic 
characteristics of the populations are not measured as multivariate data. 
Another example is the homology of human impressions to certain objects. 
For example, let's say that you show photographs of flowers of many 
varieties of pansy to 100 people, and ask the people to classify the flowers 
into any number of groups. As a result, when the flowers of two varieties are 
classified into the same group by many people, it means that flowers are 
similar between two varieties. Conversely, if the flowers of two varieties are 
classified into different groups by many people, it means that they were 
judged as unsimilar. Using such data, it is possible to set the value as the 
distance between varieties by totaling how many of people classified them 
into different groups. Again, in this case, although we do not try to 
characterize the flower of each variety in the multidimensional space of 
human impression, it is possible to measure the difference in the human 
impression among the varieties as the distance. 
Here, based on the data measured as distance, I will outline the method of 
summarizing the variation of samples with low-dimensional variables. 
There are a variety of such methods. Here I will introduce classical 
multidimensional scaling.  
Here, the distances among rice accessions (lines and varieties) are 
calculated based on marker genotype data, and analysis by 
multidimensional scaling, which is performed based on the distance matrix. 
 
First, let's extract marker genotype data and calculate the distance matrix 
based on them.  
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Let's perform the multidimensional scaling method based on the calculated 
distance matrix. 

 
 
Eigenvalues are calculated as in principal component analysis. In addition, 
the contribution and the cumulative contribution can be calculated based on 
the eigenvalues. 

 

> mydata <- alldata[, 50:ncol(alldata)]  # 50列〜最終列までがマーカーデータ 
> D <- dist(mydata)  # 関数 distは距離を計算するための関数 
    # 様々な定義に基づく距離が計算できるが 
    # 何も指定しないとユークリッド距離を計算する 
 

> res.mds <- cmdscale(D, k = 10, eig = T) 
  # cmdscaleは古典的多次元尺度構成法のための関数 
  # Dは距離行列。k = 10は計算する次元数。 
  # eig = Tは計算した固有値を出力するためのオプション 
> res.mds # 結果の表示 
 

> res.mds$eig[1:10]  # 固有値を表示 
 [1] 115029.059  40849.407  20648.953  11530.683  10069.314   6591.745 
 [7]   4996.271   4819.066   3932.298   3581.676 
> res.mds$eig[1:10] / sum(res.mds$eig) 
    # 固有値を全固有値の和で割る（寄与率） 
 [1] 0.310125555 0.110132562 0.055670871 0.031087446 0.027147501 0.017771758 
 [7] 0.013470260 0.012992505 0.010601722 0.009656423 
> cumsum(res.mds$eig[1:10]) / sum(res.mds$eig) 
   # 固有値の累積和を全固有値の和で割る（累積寄与率） 
 [1] 0.3101256 0.4202581 0.4759290 0.5070164 0.5341639 0.5519357 0.5654060 
 [8] 0.5783985 0.5890002 0.5986566 
> barplot(res.mds$eig[1:10]) # 固有値の棒グラフ 
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Figure 14. Top 10 eigenvalues calculated by multidimensional scaling 
 

According to the principal component analysis rule based on the bar chart of 
the eigenvalues in Figure 14, it is considered that the variation contained in 
the data should be represented by four dimensions. 
 
Now let's draw a scatter plot that shows the placement in 4D space. 
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> subpop <- alldata$Sub.population  # extract subpopulation info. 
> op <- par(mfrow = c(1,2)) # draw graphs in 1 row x 2 columns 
> plot(res.mds$points[,1:2], col = as.numeric(subpop)) 
  # coordinates are stored as points 
  # plot the 1st and 2nd axes 
> plot(res.mds$points[,3:4], col = as.numeric(subpop)) 
  # plot the 3rd and 4th axes 
> legend(5, -10, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 0.5) 
     #  add a legend 
> par(op) 
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Figure 15. The placement of accessions (varieties and lines) in four-

dimensional space determined by multidimensional scaling 
 
Let's draw a three-dimensional scatter plot as well as principal component 
analysis.

 
 
Looking at the results of multidimensional scaling seems to be very similar 
to the results of principal component analysis. Let's calculate the correlation 
between the coordinate values and the principal component scores obtained 
by multidimensional scaling method. 

 
You can see that the first four principal components (rows) and the first four 
dimensions of the multidimensional scaling are either correlated (-1 or 1) 
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> df <- data.frame(subpop = subpop, res.mds$points[,1:4]) 
> plot_ly(data = df, x = ~X1, y = ~X2, z = ~X3, color = ~subpop, type = 
"scatter3d", mode = "markers") 
> plot_ly(data = df, x = ~X2, y = ~X3, z = ~X4, color = ~subpop, type = 
"scatter3d", mode = "markers") 

> cor(res.pca$x[,1:4], res.mds$points[,1:4])  
             [,1]          [,2]          [,3]          [,4] 
PC1 -1.000000e+00  6.392724e-15 -3.856842e-16  1.819451e-16 
PC2  1.946384e-14  1.000000e+00  7.024318e-16 -2.342063e-16 
PC3 -4.646783e-16  8.465118e-16 -1.000000e+00 -1.033884e-15 
PC4 -4.482051e-16 -4.494095e-16  8.594246e-16 -1.000000e+00 
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with each other. If you look at this result from a slightly different point of 
view, even if the values of the original variable are not given, the Euclidean 
distance matrix based on the values can be used to perform the same 
analysis as principal component analysis. 
 
Given a distance matrix, as with principal component analysis, being able to 
represent sample variation with fewer variables is one of the most useful 
aspects of multidimensional scaling. I will explain this point with a slightly 
specific example. In the second lecture, it was shown that there is a strong 
relationship between principal component scores (PC1-4) representing 
genetic background and plant height (Plant.height). Using the 
multidimensional scaling method, it is possible to calculate a variable with 
the same variation as the principal component score from "the relationship 
between accessions (varieties and lines)". Based on that, You can check 
whether the genetic relationship affects the plant height. In other words, 
whether the distance relationship samples samples is related to the 
variation in another characteristic found in samples by combining 
multidimensional scaling and another analysis (eg, multiple regression 
analysis). 
 
Finally, let's make a concrete calculation and check the above-mentioned 
points.  

 
  

> mydata <- data.frame( # combine plant height with the MSD result 
  plant.height = alldata$Plant.height, 
  res.mds$points[,1:4] 
  ) 
> mydata <- na.omit(mydata) # remove missing data 
> model <- lm(plant.height ~ ., data = mydata) 
  # multiple regression analysis 
> anova(model)   # analysis of variance 
（omitted） 
> plot(mydata$plant.height, predict(model))  

# biplot of observations and the expectations of the model 
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<Formulation of multidimensional scaling method> 
Here, let's consider the problem of finding the arrangement of n samples 
distributed in q-dimensional space from the “Euclidean distance between 
samples”. 
 
Now, the coordinates where the arrangement of the ith sample in q-
dimensional space is represented by a column vector 

 
At this time, using an n × q matrix obtained by bundling and 
transposing column vectors of n samples, a matrix that has an inner product 
of column vectors of n samples as tis element can be expressed as 

 
Here, the (i, j) element of the inner product matrix B is the inner product of 
the i-th j-th sample. That is 

. 

 
At this time, the Euclidean distance dij between the i-th sample and the j-th 
sample can be expressed as 

 

 
If the center of gravity of x is located at the origin, then 

 

If bij is summed over i and j, 

. 

Therefore, the followings hold. 
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Using the above equation, the following relationship holds. 

                     (6) 

here, 

 

 
Equation (6) means that if the distance matrix D = { } is given, the inner 
product matrix B can be calculated reversely from D. The calculation 
procedure is as follows. First calculate the squares  of each element of 

the distance matrix, and then calculate its row mean , column mean , 

and total mean . Finally, the inner product matrix B is obtained by 
computing bij according to equation (6). 
 
Once the inner product matrix B is obtained, it suffices to find X that 
satisfies . To find X, perform a spectral decomposition of matrix B, 
as shown below. 
 
Suppose the matrix B is a symmetric matrix with q eigenvalues and 
eigenvectors. That is, 

. 
Now, bundling these expressions, we obtain 
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Let  and , where  be a diagonal 
matrix with diagonal elements , then the above equation 

                            (7) 
 
Since the eigenvectors are unit vectors ( ) and mutually orthogonal 
( ), the matrix U is 

               (8) 
 
That is, the inverse of the matrix U is simply the transpose of U. 
 
From equations (7) and (8), the matrix B is 

 
 
Setting  the above equation is 

 
where . 
 
Therefore, X that satisfies  is 

                             (9) 
where . 
 
Thus, the classical multidimensional scaling method eventually becomes the 
eigenvalue problem of the inner product matrix B obtained from the 
distance matrix D. And by solving the eigenvalue problem, we can find the 
placement of n samples in the q-dimensional space. 
 
Now let's analyze using the classical multidimensional scaling method 
without using the function cmdscale in the procedure described above. 
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First, prepare the data. As before, we use marker genotype data. Calculate 
the Euclidean distance using the function dist and prepare the distance 
matrix D. 

 
 
First, each element of the distance matrix D is squared. Next, find the row 
mean, column mean, and total mean of the squared elements. Row average 
and column average can be easily calculated using the function apply. Finally, 
calculate the inner product matrix B according to equation (6). The code of R 
is as follows.  

 
 
Performs eigenvalue decomposition of inner product matrix B. Also, calculate 
coordinate values according to equation (7). 

 
 
Let's compare it with the result calculated using the function cmdscale. You 
will see that the results are in agreement. 

 
 
Let's draw a picture last. You will see the same picture as Figure 15. Let's 
check it. 

> mydata <- alldata[, 50:ncol(alldata)] 
> D <- dist(mydata) 

> D2 <- as.matrix(D^2)   
# D2 is the matrix of squares of elemets of the matrix D 

> D2i. <- apply(D2, 1, mean) # row  mean 
> D2.j <- apply(D2, 2, mean) # column mean 
> D2.. <- mean(D2)  # overall mean 
> B <- - 0.5 * (sweep(sweep(D2, 1, D2i.), 2, D2.j) + D2..)  
   # same as the equation 6 

> eig <- eigen(B)   # eigenvalue decomposition 
> eval <- eig$values[1:10]  # use the first 10 components 
> evec <- eig$vectors[,1:10] # eigenvectors 
> points <- evec * rep(sqrt(eval), each = nrow(evec)) 
    # calculation following Eq. 7 

> head(points) 
（omitted） 
> head(res.mds$points) 
（omitted） 
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> subpop <- alldata$Sub.population 
> op <- par(mfrow = c(1,2)) 
> plot(points[,1:2], col = as.numeric(subpop)) 
> plot(points[,3:4], col = as.numeric(subpop)) 
> legend(5, -10, levels(subpop), col = 1:nlevels(subpop), pch = 1, cex = 0.5) 
> par(op) 
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<Report assignment> 
 
Analyze the phenotypic data of rice using principal component analysis (try 
analyzing with a combination of variables different from those analyzed in 
the lecture). 
 
Submission method: 
• Create a report as a pdf file and submit it as an email attachment. 
• Send an e-mail to "report@iu.a.u-tokyo.ac.jp". 
•  At the beginning of the report, do not forget to write your affiliation, 
student number, and name. 
• The deadline for submission is June 7 
 
 
 
 
 
 
 
 
 
 
 

K.W. 

 


