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<Hierarchical cluster analysis>

For many objects, it may be useful to classify them into groups (clusters)
based on their multidimensional characteristics. For example, if varieties and
lines included in genetic resources can be grouped based on DNA
polymorphism data, the variation of traits in genetic resources can be
organized based on the group information.

As I mentioned in the last lecture, it is difficult to understand the
variation in many features of many samples in data just by looking at the
data. In principal component analysis, we tried to summarize variation in
data by representing a large number of features with low-dimensional
variables. Cluster analysis tries to summarize the variation in data by
grouping a large number of samples into a small number of groups. In this
lecture, we will first outline hierarchical cluster analysis that classifies a

large number of samples hierarchically into groups.

In this lecture, explanations will be given using rice data (Zhao et al. 2011,
Nature Communications 2: 467) as before. In this lecture, three data of
variety/line data (RiceDiversityLine.csv), phenotype data
(RiceDiversityPheno.csv) and marker genotype data (RiceDiversityGeno.csv)
are used. All of them are downloaded from the Rice Diversity web page
http://www.ricediversity.org/. As described earlier, marker genotype data is
imputed for missing data using the software fastPHASE (Scheet and
Stephens 2006, Am J Hum Genet 78: 629).

First, let's read three datasets and combine them as we did last time.



line <- read.csv("RiceDiversitylLine.csv")

pheno <- read.csv("RiceDiversityPheno.csv")

geno <- read.csv("RiceDiversityGeno.csv")

line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID")
alldata <- merge(line.pheno, geno, by.x = "NSFTV.ID", by.y = "NSFTVID")
rownames(alldata) <- alldata$NSFTV.ID
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First, let's classify 374 varieties / lines into clusters based on variations in
DNA markers (1,311 SNPs). First, prepare the data for that.

> data.mk <- alldata[, 50:ncol(alldata)]
# marker data start from 50" column
> subpop <- alldata$Sub.population
# extract subpopulation data
> dim(data.mk) # size of data
[1] 374 1311 # 374 rows x 1311 columns

There are various methods for cluster analysis, but here we will perform

cluster analysis with one method.

First, based on the DNA marker data, distances amonog varieties and lines

are calculated.

> d <- dist(data.mk) # calculate Euclid distance among 374 var/lines
> head(d) # the result is in the distance matrix format
[1] 54.47141 53.08033 44.70547 52.82571 45.40700 44.36904
> as.matrix(d)[1:6, 1:6] # convert it to the matrix format

1 3 4 5 6 7

1 0.00000 54.47141 53.08033 44.70547 52.82571 45.40700
3 54.47141 ©0.00000 37.53194 46.79940 37.68502 49.82169
4 53.08033 37.53194 0.00000 44.38481 17.58133 46.49073
5 44.70547 46.79940 44.38481 ©.00000 43.85254 42.87989
6 52.82571 37.68502 17.58133 43.85254 0.00000 46.69070
7 45.40700 49.82169 46.49073 42.87989 46.69070 ©.00000

Note that the value returned by the function dist is not in the form of a matrix,
but in the form of a distance matrix. Therefore, if you want to display the
distances among the first six varieties in a 6x6 matrix, you need to convert
the distance matrix-specific format to the matrix format with the function

as.matrix as described above.

Let's do cluster analysis.



> tre <- hclust(d) # clustering with the function hclust

> tre # show the result
Call:

hclust(d = d)

Cluster method : complete

Distance : euclidean

Number of objects: 374

After the “Call” the executed command was displayed as it is in regression
analysis. Also, “Cluster method” shows the method of cluster analysis
(definition of distance between clusters), and “Distance” shows calculation
method of distance. Also, “Number of objects” is the number of classified

objects (here, varieties and lines).

Let's display the result of cluster analysis as a dendrogram.

> plot(tre) # HUZ hclust OfEREB plot I AT 5721
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Figure 1. Dendrogram of 374 varieties / lines obtained based on marker
genotype data
Figure 1 shows the result obtained with the function hclust in the form of a
dendrogram. Using the package ape, you can draw a dendrogram in various
expression styles. To do so, you first need to convert the result obtained with

the function hclust into a class called phylo, which is defined in the package



ape.

> require(ape) # package ape
> phy <- as.phylo(tre) # convert hclust to phylo

Let's plot the result converted to the phylo class.

> plot(phy) # plot the object converted to phylo

Figure 2. A dendrogram converted to the phylo class of the package ape

Figure 2 is very difficult to see due to the large number of varieties and
lines. Let's make it a little easier to see, by making it possible to confirm the
relationship between the genetic background of each variety / line (the

belonging subpopulation) and the position in the tree diagram with the color

of the branches.



> phy$edge # the information of connection of blanches
(omitted)
> subpop[phy$edge[,2]] # the second column of phy$edge is
# ID of downstream of each blanch.
# If the blanch is not terminal, the value is <NA>
(omotted)
> col <- as.numeric(subpop[phy$edgel,2]])
# Use the subpop information as color ID
> edge.col <- ifelse(is.na(col), "gray", col)
# Convert the color of <NA> as “gray”
> plot(phy, edge.color = edge.col, show.tip.label = F)
# Set color of blanches with edge.color option
# The terminal lavels are omitted with show.tip.label = F

Figure 3. A dendrogram colored for each population group of varieties and

lines

As seen in Figure 3, it is possible to confirm the tendency that varieties and
lines included in the same subpopulation are included in the same cluster,
and it is understood that differences in genetic background of varieties and

lines are well reflected in the results of cluster analysis.

The phylo class of package ape can draw dendrograms in various ways of

expression. Draw different types of dendrograms.



> pdf("fig4.pdf", width = 10, height = 10)
# Output in a pdf file
> op <- par(mfrow = c(2, 2), mar = rep(@, 4))
# arrange graphs 2x2, mar is the option for margin

> plot(phy, edge.color = edge.col, type = "phylogram”, show.tip.label = F)
# default style

> plot(phy, edge.color = edge.col, type = "cladogram”, show.tip.label = F)

> plot(phy, edge.color = edge.col, type = "fan", show.tip.label = F)

> plot(phy, edge.color = edge.col, type = "unrooted", show.tip.label = F)

> par(op) # reset graphic parameters

> dev.off(Q) # close the pdf file

Figure 4. Various styles of dendrograms drawn using package ape

Figure 4 depicts the results of the same cluster analysis in a different style.
Impressions and ease of understanding are different when the style is
different. If you want to understand the genetic relationship of varieties and
lines globally, it is likely that the fourth "unrooted" type tree chart is the

most suitable.



The procedure of drawing a cluster analysis result using package ape is
somewhat troublesome because it requires conversion to a phylo class on the
way. So, let's define a series of tasks as a self-made function to simplify the

1llustration of the results of cluster analysis.

> myplot <- function(tre, subpop, type = "unrooted", ...) {

# Define a self-made function using the function function
# Specify arguments of self-made function first.
# Here, tre, subpop, type
# The default value ("unrooted") has been set for type
# Describe the processing to be executed
#by the function in the part enclosed by {3}

phy <- as.phylo(tre)

col <- as.numeric(subpop[phy$edge[,2]11)

edge.col <- ifelse(is.na(col), "gray", col)

plot(phy, edge.color = edge.col, type = type, show.tip.label =

Let's draw a dendrogram using the self-made function myplot.

> d <- dist(data.mk) # calculate distances

> tre <- hclust(d) # cluster analysis

> myplot(tre, subpop) # use the self-made function myplot
> myplot(tre, subpop, type = "cladogram™)

# use the option type to change a style




<Definition of distance>

Cluster analysis calculates distances between samples and clusters, and

performs clustering based on the calculated distances. Therefore, different

definitions of distance will give different results. Here, we will explain the

definition of the distance between samples and between clusters.

First of all, about the distance between samples. There are various

definitions to calculate the distance between samples. First, let's draw a

dendrogram based on different defined distances.

VVV VVVYVVYV

v

pdf("fig5.pdf", width = 10, height = 10)
op <- par(mfrow = c(2, 2), , mar = rep(0, 4))
d <- dist(data.mk, method = "euclidean") # Euclid distance (default)
myplot(Chclust(d), subpop) # draw a dendrogram with the self-made function
d <- dist(data.mk, method = "manhattan") # Manhattan distance
myplot(Chclust(d), subpop)
d <- dist(data.mk, method = "minkowski", p = 1.5) # Minkowski distance
myplot(Chclust(d), subpop)
d <- as.dist(1 - cor(t(data.mk)))

# Distance based on correlation

# The matrix should be converted to a dist class
myplot(Chclust(d), subpop)

par(op)
dev.off(Q) # close the pdf file
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Figure 5. A dendrogram calculated based on different definitions of

distances between samples

In this data, the topology of the dendrogram does not change significantly

even if the definition of distance is different, but depending on the data, the
definition of distance may have a large effect.

Here is the definition of the distance between the samples used above. Note

that each sample is described by q features, and let the data vector of the 1-
th sample be denoted by x, =(x

HERRRE)

x,)', and the data vector of the j-th
sample be denoted by x,=(x

jloeeeo

x;,)". At this time, the distance between
samples 1 and j, d(x;.X;), 1s defined as follows.



® Kuclidian distance

d(x,.x,)= \/2; (X —x,)°
® Manhattan distance
q
d(x;,x;) = ZH ‘xik — X

® Minkowski distance

q p
dxx) = {3 o~
® Distance based on correlation
q — —
Zkzl('xik _xi)(xjk - 'xj)

\/ZZ=1 (X, =X, \/ZZ:1 (x;—X; )

I R Y
Here, xi:_zk:1xiq’ X = Zk:1qu

n n

dx, x;)=1-r,=1-

The Manhattan distance is the origin of its name when traveling around a
city divided into squares, such as Manhattan in New York City. In such an
urban area, for example, when moving from the point (0, 0) to the point (2,
3), it is not possible to move diagonally (Euclidean distance +/13) because of
the building, and move along the road (Manhattan distance 5) is necessary.
Minkowski distance is a generalized form of Euclidean distance and
Manhattan distance. It corresponds to the Manhattan distance when p =1

and the Euclidean distance when p = 2.

For correlation-based distances, calculate the correlation coefficient
"between samples instead of between variables" and subtract one from it as
the distance. When the correlation 1s 1, the distance 1s 0. When the
correlation is O, the distance 1s 1. When the correlation is -1, the distance is
2. That 1s, the maximum value 1s 2 for distances based on the correlation
coefficient. When performing cluster analysis based on the similarity of

expression patterns between genes, "absolute value of correlation" may be
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reduced instead of reducing correlation from 1. In this case, the distance is 0
when the correlation is -1 or 1, and the distance is 1 when the correlation is
0.

The function dist can also calculate the following distances: Although it was
not suitable for this data, it was not used, but depending on the nature of

the data to be analyzed, the distances described below may be appropriate.
® Chebyshev distance
(Set method="maximum"
d(x;,x;)= m}flx(|xik - xjk‘)

® (Canberra distance

(Set method="canberra")

Xig = Xji

d(x,.x,)= 2,11

|xik|+‘xjk|

® Hamming distance

(Set method="binary")

dx;.x)=Y" (I -6,.)

Here,
1 (a=b
5”:{ (a=b)
* 0 (azb)

The Chebyshev distance is a distance based only on the difference of one of
the q features that is the most different. This distance is the limit p-— o of
the Minkowski distance. The Hamming distance is a commonly used
distance in information science, and it counts the number of positions that
do not match when comparing values at the same position for a sequence of
the same length. For data that uses the Hamming distance, xi« is not a

continuous value but a discrete value (0, 1) in most cases.
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So far we have described the definition of the distance between samples. In
hierarchical cluster analysis, samples close to each other are grouped into
one cluster, and samples and clusters or clusters are further grouped into
higher level clusters. Therefore, you need to define not only the distance
between samples but also the distance between samples and clusters or

between clusters.

First, let's draw a dendrogram based on various definitions of inter-cluster
distance. In the hclust function, the calculation method (definition) of the

distance between clusters can be specified by the option method.

> pdf("figb.pdf", width = 10, height = 10)
> d <- dist(data.mk)

> op <- par(mfrow = c(2, 3), mar = rep(@, 4))
> tre <- hclust(d, method = "complete")

> myplot(tre, subpop)

> tre <- hclust(d, method = "single")

> myplot(tre, subpop)

> tre <- hclust(d, method = "average")

> myplot(tre, subpop)

> tre <- hclust(d, method = "median")

> myplot(tre, subpop)

> tre <- hclust(d, method = "centroid")

> myplot(tre, subpop)

> tre <- hclust(d, method = "ward.D2")

> myplot(tre, subpop)

> par(op)

> dev.offQ)

12
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Figure 6. A dendrogram based on various inter-cluster distance definitions

As you can see in Figure 6, the difference in the definition of inter-cluster
distance is different from the difference in the definition of inter-sample
distance, and the topology of the dendrogram changes significantly. In some
cases, the branch length becomes negative and it causes a strange
dendrogram (lower left, lower center). Also, differences between clusters
may be highly emphasized (lower right). It is difficult to choose which
method to use from these definitions. But in many cases, it is chosen that
has no major contradiction with known (a prior:) information. For example,
here, it 1s better to choose one that is less inconsistent with the

subpopulation to which the variety/line belongs.

Indicates the definition of the distance between clusters that can be

specified by the function hclust. Based on the distance between the samples,
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d(x,.x,), the distance between clusters A and B, das, is calculated as follows:

® Maximum distance method (complete connection method)
(Set method="complete")
dy = riax(d(xi,xj))
jeB
® Minimum distance method (single connection method)
(Set method="single")
dy = rgiAn(d(xi X))
jeB
® Average distance method
(Set method="average")

dyg = 1 sz(xi’xj)

NANg iea jeB

Here, n,,n,represent the numbers of samples included in clusters A

and B, respectively.

In the following three definitions, when clusters A and B merge to form a
new cluster C, the distance dco between new clusters C and clusters O other
than A and B is defined as follows. The distance between clusters A and B is
denoted by dag, the distance between clusters A and O by dao, the distance
between clusters B and O by dso and the number of samples contained in

clusters A, B and O by na, ns, and no.

® C(Centroid method
(Set method="centroid")
nA

2 2 2
deo = dyo+ dpo = 2 “aB
n,+ng n,+n, (n,+ny)

nB nA nB 2

® Median method

(Set method="median"”)

1 1 1
deo = EdAO +§d30 _ZdAB

® Ward’s method

14



(Set method="ward.D2")

n,+n, ng+n, n,

2 _ 2 2
dco - dAO + dB -

2
0 dAB
n,+tng,+n, n,+ng,+n, n,+ng,+tn,

Let's compare in more detail the two methods in Figure 6 where the

correspondence with the divided groups seems clear.

> op <- par(mfrow = c(1, 2))

> d <- dist(data.mk)

> tre <- hclust(d, method = "complete™)

> myplot(tre, subpop, type = "phylogram™) # draw the graph as a phylogram
> tre <- hclust(d, method = "ward")

> myplot(tre, subpop, type = "phylogram™)

> par(op)

il

i stk 11

Figure 7. Dendrograms of the longest distance method (left) and Ward
method (right)
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<Cluster analysis from both sides of multidimensional data>

So far, varieties and lines have been classified into clusters based on DNA
marker data. Cluster analysis of varieties and lines can be performed based
on trait data as well as DNA marker data. Also, regarding the same data, it
is possible to classify traits having similar variation patterns among
varieties/lines into the same cluster, considering them as targets for
classifying traits instead of vareties/lines. Here we will explain such an

approach.

First, let's prepare trait data. Let's extract trait data from all data (alldata),

excluding traits not suitable for such analysis.

> required.traits <- c("Flowering.time.at.Arkansas",
"Flowering.time.at.Faridpur", "Flowering.time.at.Aberdeen",
"Culm.habit", "Flag.leaf.length", "Flag.leaf.width",
"Panicle.number.per.plant”, "Plant.height", "Panicle.length",
"Primary.panicle.branch.number", "Seed.number.per.panicle",
"Florets.per.panicle"”, "Panicle.fertility", "Seed.length",
"Seed.width","Brown.rice.seed.length", "Brown.rice.seed.width",
"Straighthead. suseptability"”,"Blast.resistance",
"Amylose.content", "Alkali.spreading.value", "Protein.content™)
data.tr <- alldata[, required.traits] # extract required traits
missing <- apply(is.na(data.tr), 1, sum) > @ # samples with missing
data.tr <- data.tr[!missing, ] # remove the samples
subpop.tr <- alldata$Sub.population[!missing] # subpop info

V V V V

The trait data varies in size (variance) depending on the trait. If this data is
used as it is, the large variance trait has a large effect on the distance
calculation, and the small variance trait has a small contribution to the

distance calculation. Therefore, all traits are normalized to variance 1.

> data.tr <- scale(data.tr) # Standardization of data

Now let's perform cluster analysis with traits classified as variety/line and

cluster analysis with traits classified as trait data.
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d <- dist(data.tr) # calculate distance
> tre.var <- hclust(d, method = "ward.D2")
# C(lustering varieties/lines with Ward’s method
d <- dist(t(data.tr)) # Calculate distance among traits
tre.tra <- hclust(d, "ward.D2")
# Clustering traits with Ward’s method
op <- par(mfrow = c(1, 2))
myplot(tre.var, subpop.tr, type = "phylogram")
plot(tre.tra, cex = 0.5)
par(op)

vV Vv

V V V V
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Figure 8. Cluster analysis based on trait data
Dendrograms showing the relationship between varieties and lines (left)

and the relationship between traits (right)

From the dendrogram on the right side of Figure 8, it can be seen that the
traits (Plant. Height, Panicle. Length, Flag. Leaf. Length) related to the size
of the plant are closely related to each other. You can also see that the

flowering timing (Flowering.time.at. *****) located in the three environments
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is located near the cluster. In addition, it is also clear that the flag leaf width
(Flag.leaf.width) is different from other size-related traits and strongly
associated with the traits that characterize the panicle. In this way,
multidimensional data can be cluster analyzed from either side. With this in
mind, you will be able to view the same data from a slightly different

perspective.

Note that the above analysis can display results more visually using the

Figure 9. Display of cluster analysis results and heatmap of trait data

heatmap function.

> pdf("fig9.pdf")
> heatmap(data.tr, margins = c(12,2))
> dev.off(Q)

|| |
\

Culm.habit
Panicle.number.per.plant |

Flowering.time.at.Arkansas
Flowering.time.at.Aberdeen

Flowering.time.at.Faridpur ”
Florets.per.panicle
Seed.number.per.panicle
Flag.leaf.width
Amylose.content
Flag.leaf.length
Straighthead.suseptability
Plant.height
Panicle.length

Seed.length ||
Brown.rice.seed.length
Protein.content
Panicle.fertility
Alkali.spreading.value
Blast.resistance
Seed.width
Brown.rice.seed.width

Primary.panicle.branch.number
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There is also a heatmap function, heatmap.2, which is included in the gplots
package (I think there are many other functions). Let's draw a heat map
using this. Although the way of giving options is slightly different, you can

draw a nice-looking figure.

> # this part is optional (plot with heatmap.2)
> require(gplots)
(omitted)

> pdf("fig9-2.pdf", height = 12)
> heatmap.2(data.tr, margins = c(12,2), col=redgreen(256), trace = "none",
lhei = c(2,10), cexRow = 0.3)
> dev.offQ)
quartz
2
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Figure 9-2. Display heat map of trait data using heatmap.2 function

You can reflect the results of another cluster analysis as follows: Reflect the
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result of the cluster analysis performed for the same data on the heat map

display.

> pdf("figl@.pdf")

> heatmap(data.tr, # trait data
Rowv = as.dendrogram(tre.var), #dendrogram for varieties/lines
Colv = as.dendrogram(tre.tra), # dendrogram for traits
RowSideColors = as.character(as.numeric(subpop.tr)),
labRow = subpop.tr, # replace the labels
margins = c(12, 2)) # set margins of the graph

> dev.off()

Panicle.fertility

Culm.habit
Panicle.number.per.plant
Seed.width
Brown.rice.seed.width
Blast.resistance
Alkali.spreading.value
Protein.content
Seed.length
Brown.rice.seed.length
Flag.leaf.width
Seed.number.per.panicle
Florets.per.panicle
Flowering.time.at.Faridpur
Flowering.time.at.Arkansas
Flowering.time.at.Aberdeen
Amylose.content
Flag.leaf.length
Straighthead.suseptability
Plant.height
Panicle.length

Primary.panicle.branch.number

Figure 10. The result of changing the cluster analysis method in Figure 9 to Ward's

method
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This can also be drawn using the heatmap.2 function as before.

> # perform clustering with appropriate methods
> pdf("figl@.pdf")
> heatmap(data.tr, Rowv = as.dendrogram(tre.var),
+ Colv = as.dendrogram(tre.tra),
+ RowSideColors
as.character(as.numeric(subpop.tr)),
+ labRow = subpop.tr,
+ margins = c(12, 2))
> dev.offQ)
quartz

2
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Figure 10-2. The result of changing the cluster analysis method of Figure 9-

2 to Ward's method

23



The heatmap function does not have to perform cluster analysis on the same
data in both vertical and horizontal directions. For example, you can also
apply the results of cluster analysis using DNA marker data for the row

side.

> data.mk2 <- data.mk[!missing, ] # remove samples with missing trait data
# to make the sample number same between two datasets
d <- dist(data.mk2) # calculate distance with DNA data
tre.mrk <- hclust(d, method = "ward.D2") # Clustering with Wald’s method
pdf("figll.pdf™)
heatmap(data.tr, Rowv = as.dendrogram(tre.mrk),
# this part is different from the above
Colv = as.dendrogram(tre.tra), # the remainders are same
RowSideColors = as.character(as.numeric(subpop.tr)),
labRow = subpop.tr,
margins = c(12, 2))

V V V V

dev.off(Q)
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Figure 11. Relationship between the results of cluster analysis based on
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genetic marker data and traits

This can also be drawn using the heatmap.2 function as before.

> # perform clustering with appropriate methods
> pdf("figl@.pdf")
> heatmap(data.tr, Rowv = as.dendrogram(tre.var),
+ Colv = as.dendrogram(tre.tra),
+ RowSideColors
as.character(as.numeric(subpop.tr)),
+ labRow = subpop.tr,
+ margins = c(12, 2))
> dev.offQ)
quartz

2
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Fig. 11-2. Relationship between the results of cluster analysis and traits

based on genetic marker data expressed using heatmap. 2 function
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<(Classification based on hierarchical cluster analysis>

Sometimes you want to delineate samples into places where there is
similarity between samples and to categorize samples discretely into groups.
This section describes how to classify samples into a fixed number of

clusters based on the results of hierarchical cluster analysis.

Based on the results of hierarchical cluster analysis based on DNA marker
data, let's classify varieties/lines into five groups. Five is a number

according to the number of division groups to which varieties/lines belong.
From the result of hierarchical cluster analysis, we use the function cutree

to find discrete groups.

> d <- dist(data.mk)
> tre <- hclust(d, method = "ward.D2") 2 fRKT
> cluster.id <- cutree(tre, k = 5)
# classify samples into 5 groups
> cluster.id # show the result

Let's illustrate the results of classification into five groups based on cluster

analysis.

> op <- par(mfrow = c(1,2), mar = rep(@, 4)) # set graphic options
> myplot(tre, cluster.id, type = "phylogram")
# color the terminals with the result of cutree
> myplot(tre, subpop, type = "phylogram", direction = "leftwards")
# color the terminal with subpop info
> par(op)
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Fig. 12. Relationship between classification by cluster analysis (left) and divided

groups (right)

Let's check the relationship between classification and subpopulation based on

cluster analysis by creating cross tabulation table.

> table(cluster.id, subpop) # cluster.id & subpop » 7 o 2 EFHEEFR
subpop
cluster.id ADMIX AROMATIC AUS IND TEJ TRJ
1 5 O 0 0 84 0
2 14 O 0 80 o0 0
3 1 052 0 0 0
4 2 14 0 0 0 0
5 34 @ 0 0 3 85

It can be seen that the two match very well, except for the three varieties /
lines of Indica (IND). This is thought to be because the divided population
structure itself was estimated based on DNA marker data. In addition, it is
also understood that varieties that are estimated to be a mixture of multiple

subpopulations (ADMIX) are classified into various groups.

Let's confirm the result of classification by hierarchical cluster analysis on

the principal component axis.

> pca <- prcomp(data.mk) # PCA
> op <- par(mfrow = c(1,2)) #
> plot(pca$x[,1:2], pch = cluster.id, col = as.numeric(subpop))

# draw scatterplot with PC1l and 2

# shapes of dots represent the result

# colors of dots represent subpop info
plot(pca$x[,3:4], pch = cluster.id, col = as.numeric(subpop))

v
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Figure 13. Classification by cluster analysis and relationship between

subgroups
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<Non-hierarchical clustering>
When classifying into a certain number of groups, it is not necessary to
classify hierarchically. Here we introduce the k-means method, which is one

of the non-hierarchical cluster analysis methods.

For the same data as before, let's classify it into five groups using the

function kmeans.

> kms <- kmeans(data.mk, centers = 5) # classify samples into 5 groups
> kms # show the result
(omitted)

The k-means method performs classification into the number of groups

determined by the following algorithm.

1. randomly choose k samples as k cluster centers

2. Find the distance between all data points and k cluster centers, and
classify each data point into the closest cluster (centering on the center of
gravity)

3. Update the center (center of gravity) of the formed cluster

4. Repeat 2-3 until the cluster center (center of gravity) does not change

In the k-means method, the results may vary depending on the first
randomly chosen sample. In fact, let's repeat the analysis with the same

data and check the variation of the results.

for(i in 1:5) { # repeat the same analysis five times
kms <- kmeans(data.mk, centers = 5, nstart = 50)

# nstart = 50 repeat analysis with 50 different sets of chosen samples
print(table(kms$cluster, subpop))

3

Unlike before, you can see that the results are stable. Note that although
the “number” of the group into which each sample is classified varies among
different analyzes, this is not a particular problem because it is an arbitrary

number assigned to five groups.
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Let's create a cross-tabulation table and check the relationship between
groups classified by k-means, groups classified by hierarchical cluster

analysis, and division groups to which varieties / lines belong.

> table(kms$cluster, subpop) # compare k-means and subpop
subpop
ADMIX AROMATIC AUS IND TEJ TRJ

1 1 @ 52 0 0 0
2 23 @ 0 0 1 85
3 17 @ 0 0 8 0
4 12 @ 0 80 0 0
5 3 14 0 0 0 0

> table(cluster.id, subpop)
# compare hierarchical clustering and subpop
cluster.id ADMIX AROMATIC AUS IND TEJ TRJ]

1 5 6 0 0 84 0
2 14 0O 0 8 0 0
3 1 0@ 52 0 0 0
4 2 14 0 0 0 0
5 34 0 6 o0 3 85

> table(Ckms$cluster, cluster.id)
# compare hierarchical clustering and k-means

cluster.id

1 2 3 4 5
1 0 0 53 0 0
2 0 1 0 0 108
38 1 0 0 14
4 0 92 0 0 0

From cross-tabulation tables, it can be seen that varieties and lines
belonging to the subpopulations other than ADMIX and IND are classified
in the same way by k-means and hierarchical cluster analysis. Looking at
the third crosstabulation table, the classification results of both methods are
almost identical, while some differences can be seen. This is mainly due to
the fact that the classification of varieties/lines in which the subpopulation
is ADMIX (mixed) differs in both methods.
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Let's confirm the result of classification by k-means method and hierarchical

cluster analysis by plotting on principal component axis.

> convert.table <- apply(table(kms$cluster, cluster.id), 1, which.max)
# to match the ID of clusters between two different methods
> convert.table # table for converting IDs
12345
53421
> cluster.id.kms <- convert.table[kms$cluster] # convert IDs
> pdf("figl4.pdf", width = 8, height = 8) #
> op <- par(mfrow = c(2,2))
> plot(pca$x[,1:2], pch = cluster.id, col = as.numeric(subpop),
main = "hclust™) # the result of hclust
> plot(pca$x[,3:4], pch = cluster.id, col = as.numeric(subpop),
main = "hclust™)
> plot(pca$x[,1:2], pch = cluster.id.kms, col = as.numeric(subpop),
main = "kmeans™) # the result of k-means
> plot(pca$x[,3:4], pch = cluster.id.kms, col = as.numeric(subpop),
main = "kmeans™)
> par(op)
> dev.offQ)
hclust hclust
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Figure 14. Classification by hierarchical cluster analysis (top) and k-means

(bottom) Relationship between the score and the principal component score
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<Determination of appropriate number of groups>

The number of groups classified up to this point has been set to 5 according
to the number of divided groups. What should we do to check if the number
of 5 groups is really appropriate? One way to determine the appropriate
number of groups is to classify them into various numbers of groups and
determine the degree of decrease in the within groups sum of squares at
that time. there is.

As explained in the analysis of variance, the sum of squares is
divided into the sum of squares between groups and the sum of squares
within groups. Therefore, when the number of groups is 1, the sum of
squares is the sum of squares within groups. Then, as the number of groups
increases to 2, 3, 4 ..., the sum of squares between groups increases and the
sum of squares within groups decreases. When the number of groups finally
matches the number of samples, the sum of squares within groups becomes
0. Therefore, the rule of minimizing the sum of squares within a group is
meaningless because the number of groups is always the number of
samples. Therefore, as with the rules for determining the number of
components in principal component analysis, find the point where the
reduction of the sum of squares within a group changes from a sudden

change to a gradual change, and use it as the number of groups to adopt.
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Now let's change the number of groups from 1 to 10 and calculate the sum of

squares within a group. Graphically illustrate how it decreases.

> n <- nrow(data.mk) # number of samples
> wss <- rep(NA, 10) # prepare a vector for within-group sum of squares
wss[1] <- (n - 1) * sum(apply(data.mk, 2, var))
# calculate variance and convert it to sum of squares

for(i in 2:10) {

print(i) # show the progress with printing i

res <- kmeans(data.mk, centers = i, nstart = 50)

# k-means with k = 2-10
wss[i] <- sum(res$withinss)

v

v

3
(omitted)
> plot(1:10, wss, type = "b", xlab = "Number of groups",
ylab = "Within groups sum of squares™)

Within groups sum of squares
200000 250000 300000 350000
o

o—_
O\O\o\o

I I I I I
2 4 6 8 10

Number of groups

Figure 15. Change in the within group variation when the number of

clusters is 1 to 10 by k-means method
Looking at Fig. 15, we can see that the decrease in the within group sum of

squares becomes linear after the number of clusters exceeds five. Also from

this figure, the number 5 is considered to be a suitable number of groups.
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<Detection of Ambiguous Classification Samples>

So far, each sample has always been classified into one group. Then, among
the samples classified into a certain group, there will be those that are
clearly classified into that group and those that are "barely" classified into
that group. In order to clarify the certainty of classification, it is useful to be
able to detect a sample with an ambiguous classification like the latter by
some standard. Here, we will introduce a method to evaluate classification
ambiguity based on statistics called shadow value (Everitt and Hothorn

2011, An introduction to applied multivariate analysis with R. Springer).

In the kms function, the position of the center of gravity of each group
determined by the k-means method is calculated. Here, we calculate the
distance to the center of gravity of these groups from each sample, calculate
the distance to the nearest group and the distance to the next closest group,

and evaluate the ambiguity based on the difference.

First we calculate the distance between all samples and group centroids

using the function rdist which is included in the package fields.

> require(fields) # Use fields
> d2ctr <- rdist(kms$centers, data.mk)
# calculate distance between group centroids (kms$centers) and samples

> d2ctr # check the result
(omitted)

> apply(d2ctr, 2, which.min) # find the closest group
(omitted)

> kms$cluster # the result of k-means
(omitted)

The k-means classifies each sample into the closest group to the center of
gravity, as mentioned earlier. Therefore, note that the two results displayed

in the upper box match.

From the distances calculated for each sample, you can use the min function
to derive the distance to the nearest centroid. But how do you get the
distance to the second closest center of gravity? Here, we realize this by
creating a self-made function nth.min. The self-made function nth.min is a

function that rearranges the array given as the argument x in order of size
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(ascending order) and returns the nth value.

> nth.min <- function(x, n) { # define self-made function
sort(x)[n] # return nth sample after sorting

3

> nth.min(-10:10, 3) # test the function

> d.1st <- apply(d2ctr, 2, min) # obtain distance to the closest center
> d.2nd <- apply(d2ctr, 2, nth.min, n = 2)
# use nth.min to obtain distance to the send closest center

When the command in the upper box is executed, d.1st is assigned the
distance from each sample to the nearest centroid, and d.2nd is assigned the

distance to the second closest centroid.

Next, let's calculate the shadow value. The shadow value for the ith sample

1s defined as

Where is the distance from the observed value of the ith sample to the
centroid of the nearest group (the centroid of the group into which the
sample was classified), and represents the distance to the centroid of the
second closest group. This value is from O to 1. If this value is close to 0, it
indicates that the sample is located near the center of gravity of the
classified group; conversely, if it is close to 1, the gravity center of the
classified group and the second closest group are It means that the distance
to the center of gravity is almost the same. Therefore, in order to detect a
sample whose classification is ambiguous, it means that shadow value

should find a sample close to 1.

Let's calculate the shadow value using the distances d.1st and d.2nd
calculated above and find out if the value is 0.9 or more.

> shadow <- 2 * d.1st / (d.1st + d.2nd)
> unclear <- shadow > 0.9 # 1if shadow is larger than 0.9, unclear =T

The result of detection is assigned to "unclear". If this value is T (true), the
classification is considered ambiguous, if it is F (false), the classification is

considered relatively clear.
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Now let's draw a scatter plot on the principal component axis, representing

the @ of the sample whose classification is determined to be ambiguous.

> cluster.id.kms[unclear] <- 20 # make the value 20 when unclear = F
# 20 is the code for @
> op <- par(mfrow = c(1,2))
> plot(pca$x[,1:2], pch = cluster.id.kms, col = as.numeric(subpop),
main = "kmeans") # [XI15 & [FERICHRARIX Z <
> plot(pca$x[,3:4], pch = cluster.id.kms, col = as.numeric(subpop),
main = "kmeans™)
> par(op)
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Figure 16. Scatter plot of the sample with unclear classification by @

It can be seen from Fig. 16 that most of the varieties and lines (black points)
in which the subpopulations are ADMIX (mixed) are scattered with @. In
this way, by evaluating the ambiguity (in other words, the certainty) of the
classification of each sample, it becomes possible to grasp the classification
result in more detail. In this example, we were able to find varieties/lines
that seemed to be mixed backgrounds resulting from multiple

subpopulations.
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<Selection of representative sample>

Cluster analysis can also be used to select a small number of representative
samples from a large number of samples. For example, classification can be
performed by cluster analysis based on existing data collected for a large
number of genetic resources, and representative varieties/lines can be
selected based on the classification results. In this way, representative
varieties/lines are often selected, and field trials and molecular biological
experiments that require time and cost are often performed using these

varieties/lines.

Here, we introduce the k-medoids method as a method of cluster analysis
suitable for selection of such representative samples. The k-medoids method
1s similar to the k-means method, but instead of grouping based on the
distance to the center of gravity of the group, grouping based on the distance
to the representative samples of the groups (medoids). More specifically, this
algorithm does not use the center of a cluster as the center of gravity, but as

the coordinate point of the representative sample of the group.

> require(cluster) # package pam for k-medoids method

> kmed <- pam(data.tr, k = 48) # perform k-medoids
# k = 48
> kmed # show the result
(omitted)
> kmed$id.med # IDs of representative samples

[1] 1 28 8192 121 80 7 53 10 218 33 15 63 191 18 83 126 27
[19] 93 98 36 38 202 106 52 54 148 136 101 62 211 161 86 145 85 91
[37] 92 207 123 203 124 159 178 137 138 162 166 214

Note that the phenotypic data (data.tr) used here has already been
normalized to have variance 1. If you perform the same analysis on your
own data, carefully consider whether it is necessary to scale the data, and if

necessary, use the scale function to scale.

Now, let's illustrate the variation in the samples selected as representatives

with scatter plots on the principal component axis.
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> pca.tr <- prcomp(data.tr) # PCA

mypch <- rep(l, nrow(data.tr)) # repeat 1 the number of samples

mypch[kmed$id.med] <- 19 # change 1 to 19 for the representativess
# 1 is code for O, 19 for @

vV Vv

> op <- par(mfrow = c(1,2))
> plot(pca.tr$x[,1:2], col = as.numeric(subpop.tr), pch = mypch)
> plot(pca.tr$x[,3:4], col = as.numeric(subpop.tr), pch = mypch)
> par(op)
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Figure 17. Distribution of representative 48 varieties / lines selected by k-

medoids method

Finally, let's compare the distribution of principal component scores of 48
varieties / lines selected using the k-medoids method with the distribution of

principal component scores of all varieties / lines by drawing a histogram.

> op <- par(mfcol = c(2,4))
> for(i in 1:4) { # For PC1 to PC4
res <- hist(pca.tr$x[,i], main = paste("PC", i, "all"))
# histogram of all varieties/lines
# the information of the histogram is used in the next line
hist(pca.tr$x[kmed$id.med, i], breaks = res$breaks,
main = paste("PC", i, "k-medoids"))
# histogram of representatives
# Use the same breaks for the histogram of all varieties (res$breaks)
3
> par(op)
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Figure 19. Distribution of principal component scores of all varieties / lines

(top) and varieties / lines selected as representatives (bottom)

It can be seen from Fig. 19 that the 48 varieties / lines selected by the k-
medoids method represent the variation of the traits possessed by all the

varieties / lines.

Thus, cluster analysis can also be used to select a smaller number of
representatives from a larger number of samples. It would be useful to

remember this use of cluster analysis as well.

40



<Report assignment>

(1)

(2)

(3

Using hierarchical cluster analysis and non-hierarchical cluster analysis,
classify varieties/lines into “5 groups” based on rice phenotypic data
data.tr (page 16). For hierarchical cluster analysis, classify based on the
definition of distance between several clusters. Also, use a crosstabulation

table to find out how these relate to subpopulations.

From the 229 varieties / lines contained in data.mk2 (page 24) using the
k-medoids method, let us select 48 representative varieties / lines based
on the mutations found in the DNA markers. Also, perform principal
component analysis based on the DNA marker, and let us illustrate the
genetic variation of the selected cultivar and strain as a scatter plot on

the principal component axis.

For the varieties / lines selected in (2), use the table function to find out
how many samples belonging to each subpopulation (subpop) are selected.
In addition, for the cultivar / line selected in (2), draw Figure 19
(Histogram of the variation of traits of all cultivars / line and selected
cultivar / line), and find out how much it is represented by the varieties

and lines selected in).

Submission method:

e Prepare a report as a pdf file and submit it as an email attachment.

e Send an e-mail to "report@iu.a.u-tokyo.ac.jp".

e At the beginning of the report, please do not forget to write your
affiliation, student number, and name.

e Deadline for submission is 14 June 2019.
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