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Hierarchical cluster analysis 

For	many	objects,	it	may	be	useful	to	classify	them	into	groups	(clusters)	based	on	their	
multidimensional	characteristics.	For	example,	if	varieties	and	lines	included	in	genetic	
resources	can	be	grouped	based	on	DNA	polymorphism	data,	the	variation	of	traits	in	genetic	
resources	can	be	organized	based	on	the	group	information.	As	I	mentioned	in	the	last	lecture,	
it	is	difficult	to	understand	the	variation	in	many	features	of	many	samples	in	data	just	by	
looking	at	the	data.	In	principal	component	analysis,	we	tried	to	summarize	variation	in	data	
by	representing	a	large	number	of	features	with	low-dimensional	variables.	Cluster	analysis	
tries	to	summarize	the	variation	in	data	by	grouping	a	large	number	of	samples	into	a	small	
number	of	groups.	In	this	lecture,	we	will	first	outline	hierarchical	cluster	analysis	that	
classifies	a	large	number	of	samples	hierarchically	into	groups.	

In	this	lecture,	explanations	will	be	given	using	rice	data	(Zhao	et	al.	2011)	as	before.	In	this	
lecture,	three	data	of	variety/line	data	(RiceDiversityLine.csv),	phenotype	data	
(RiceDiversityPheno.csv)	and	marker	genotype	data	(RiceDiversityGeno.csv)	are	used.	All	of	
them	are	downloaded	from	the	Rice	Diversity	web	page	
http://www.ricediversity.org/data/index.cfm.	As	described	earlier,	marker	genotype	data	is	
imputed	for	missing	data	using	the	software	fastPHASE	(Scheet	and	Stephens	2006).	

First,	let’s	read	three	datasets	and	combine	them	as	we	did	last	time.	

# this data set was analyzed in Zhao 2011 (Nature Communications 2:467)	
line <- read.csv("RiceDiversityLine.csv", stringsAsFactors = T)	
pheno <- read.csv("RiceDiversityPheno.csv")	
geno <- read.csv("RiceDiversityGeno.csv")	
line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID")	
alldata <- merge(line.pheno, geno, by.x = "NSFTV.ID", by.y = "NSFTVID")	
rownames(alldata) <- alldata$NSFTV.ID	

First,	let’s	classify	374	varieties	/	lines	into	clusters	based	on	variations	in	DNA	markers	(1,311	
SNPs).	First,	prepare	the	data	for	that.	

#### analysis of marker data	
data.mk <- alldata[, 50:ncol(alldata)]	
subpop <- alldata$Sub.population	
dim(data.mk)	

## [1]  374 1311	

There	are	various	methods	for	cluster	analysis,	but	here	we	will	perform	cluster	analysis	with	
one	method.	

First,	based	on	the	DNA	marker	data,	distances	amonog	varieties	and	lines	are	calculated.	

# calculate Euclid distance	
d <- dist(data.mk)	
head(d)	
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## [1] 54.47141 53.08033 44.70547 52.82571 45.40700 44.36904	

as.matrix(d)[1:6,1:6]	

##          1        3        4        5        6        7	
## 1  0.00000 54.47141 53.08033 44.70547 52.82571 45.40700	
## 3 54.47141  0.00000 37.53194 46.79940 37.68502 49.82169	
## 4 53.08033 37.53194  0.00000 44.38481 17.58133 46.49073	
## 5 44.70547 46.79940 44.38481  0.00000 43.85254 42.87989	
## 6 52.82571 37.68502 17.58133 43.85254  0.00000 46.69070	
## 7 45.40700 49.82169 46.49073 42.87989 46.69070  0.00000	

Note	that	the	value	returned	by	the	function	dist	is	not	in	the	form	of	a	matrix,	but	in	the	form	
of	a	distance	matrix.	Therefore,	if	you	want	to	display	the	distances	among	the	first	six	
varieties	in	a	6x6	matrix,	you	need	to	convert	the	distance	matrix-specific	format	to	the	matrix	
format	with	the	function	as.matrix	as	described	above.	

Let’s	do	cluster	analysis.	

# cluster samples based on the complete linkage method	
tre <- hclust(d)	
tre	

## 	
## Call:	
## hclust(d = d)	
## 	
## Cluster method   : complete 	
## Distance         : euclidean 	
## Number of objects: 374	

After	the	“Call”	the	executed	command	was	displayed	as	it	is	in	regression	analysis.	Also,	
“Cluster	method”	shows	the	method	of	cluster	analysis	(definition	of	distance	between	
clusters),	and	“Distance”	shows	calculation	method	of	distance.	Also,	“Number	of	objects”	is	the	
number	of	classified	objects	(here,	varieties	and	lines).	

Let’s	display	the	result	of	cluster	analysis	as	a	dendrogram.	

# draw dendrogram	
plot(tre)	
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Figure	1.	Dendrogram	of	374	varieties	/	lines	obtained	based	on	marker	genotype	data	

Figure	1	shows	the	result	obtained	with	the	function	hclust	in	the	form	of	a	dendrogram.	Using	
the	package	ape,	you	can	draw	a	dendrogram	in	various	expression	styles.	To	do	so,	you	first	
need	to	convert	the	result	obtained	with	the	function	hclust	into	a	class	called	phylo,	which	is	
defined	in	the	package	ape.	

# convert to a phylo object defined in the ape package	
phy <- as.phylo(tre)	

Let’s	plot	the	result	converted	to	the	phylo	class.	

# plot as a phylo object	
plot(phy)	
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Figure	2.	A	dendrogram	converted	to	the	phylo	class	of	the	package	ape	

Figure	2	is	very	difficult	to	see	due	to	the	large	number	of	varieties	and	lines.	Let’s	make	it	a	
little	easier	to	see,	by	making	it	possible	to	confirm	the	relationship	between	the	genetic	
background	of	each	variety	/	line	(the	belonging	subpopulation)	and	the	position	in	the	tree	
diagram	with	the	color	of	the	branches.	

# add colors to edges	
head(phy$edge)	

##      [,1] [,2]	
## [1,]  375  376	
## [2,]  376  380	
## [3,]  380  236	
## [4,]  380  392	
## [5,]  392  209	
## [6,]  392  334	

head(subpop[phy$edge[,2]], 10)	

##  [1] <NA>  <NA>  ADMIX <NA>  ADMIX ADMIX <NA>  <NA>  <NA>  <NA> 	
## Levels: ADMIX AROMATIC AUS IND TEJ TRJ	

col <- as.numeric(subpop[phy$edge[,2]])	
edge.col <- ifelse(is.na(col), "gray", col)	
# plot a dendrogram	
plot(phy, edge.color = edge.col, show.tip.label = F)	
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Figure	3.	A	dendrogram	colored	for	each	population	group	of	varieties	and	lines	

As	seen	in	Figure	3,	it	is	possible	to	confirm	the	tendency	that	varieties	and	lines	included	in	
the	same	subpopulation	are	included	in	the	same	cluster,	and	it	is	understood	that	differences	
in	genetic	background	of	varieties	and	lines	are	well	reflected	in	the	results	of	cluster	analysis.	

The	phylo	class	of	package	ape	can	draw	dendrograms	in	various	ways	of	expression.	Draw	
different	types	of	dendrograms.	

# different types of dendrogram	
pdf("fig4.pdf", width = 10, height = 10)	
op <- par(mfrow = c(2, 2), mar = rep(0, 4))	
plot(phy, edge.color = edge.col, type = "phylogram", show.tip.label = F)	
plot(phy, edge.color = edge.col, type = "cladogram", show.tip.label = F)	
plot(phy, edge.color = edge.col, type = "fan", show.tip.label = F)	
plot(phy, edge.color = edge.col, type = "unrooted", show.tip.label = F)	
par(op)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	4.	Various	styles	of	dendrograms	drawn	using	package	ape	

Figure	4	depicts	the	results	of	the	same	cluster	analysis	in	a	different	style.	Impressions	and	
ease	of	understanding	are	different	when	the	style	is	different.	If	you	want	to	understand	the	
genetic	relationship	of	varieties	and	lines	globally,	it	is	likely	that	the	fourth	“unrooted”	type	
tree	chart	is	the	most	suitable.	

The	procedure	of	drawing	a	cluster	analysis	result	using	package	ape	is	somewhat	
troublesome	because	it	requires	conversion	to	a	phylo	class	on	the	way.	So,	let’s	define	a	series	
of	tasks	as	a	self-made	function	to	simplify	the	illustration	of	the	results	of	cluster	analysis.	

# create an own function	
myplot <- function(tre, subpop, type = "unrooted", ...) {	
    phy <- as.phylo(tre)	
    col <- as.numeric(subpop[phy$edge[,2]])	
    edge.col <- ifelse(is.na(col), "gray", col)	
    plot(phy, edge.color = edge.col, type = type, show.tip.label = F, ...)	
}	
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Let’s	draw	a	dendrogram	using	the	self-made	function	myplot.	

# use the function	
d <- dist(data.mk)	
tre <- hclust(d)	
myplot(tre, subpop)	

	

myplot(tre, subpop, type = "cladogram")	



	

	

8	

8	

	

	
Quiz:	https://www.menti.com/ky14at8u32	
 

Definition of distance 

Cluster	analysis	calculates	distances	between	samples	and	clusters,	and	performs	clustering	
based	on	the	calculated	distances.	Therefore,	different	definitions	of	distance	will	give	different	
results.	Here,	we	will	explain	the	definition	of	the	distance	between	samples	and	between	
clusters.	

First	of	all,	about	the	distance	between	samples.	There	are	various	definitions	to	calculate	the	
distance	between	samples.	First,	let’s	draw	a	dendrogram	based	on	different	defined	distances.	

# try different methods for calculating distance	
pdf("fig5.pdf", width = 10, height = 10)	
op <- par(mfrow = c(2, 2), mar = rep(0, 4))	
d <- dist(data.mk, method = "euclidean") # default method	
myplot(hclust(d), subpop)	
d <- dist(data.mk, method = "manhattan")	
myplot(hclust(d), subpop)	
d <- dist(data.mk, method = "minkowski", p = 1.5)	
myplot(hclust(d), subpop)	
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d <- as.dist(1 - cor(t(data.mk)))	
myplot(hclust(d), subpop)	
par(op)	
dev.off()	

## quartz_off_screen 	
##                 2	

	

Figure	5.	A	dendrogram	calculated	based	on	different	definitions	of	distances	between	samples	

In	this	data,	the	topology	of	the	dendrogram	does	not	change	significantly	even	if	the	definition	
of	distance	is	different,	but	depending	on	the	data,	the	definition	of	distance	may	have	a	large	
effect.	

Here	is	the	definition	of	the	distance	between	the	samples	used	above.	Note	that	each	sample	
is	described	by	𝑞	features,	and	let	the	data	vector	of	the	𝑖-th	sample	be	denoted	by	𝐱! =
(𝑥!", . . . , 𝑥!#)$ ,	and	the	data	vector	of	the	𝑗-th	sample	be	denoted	by	𝐱% = (𝑥%", . . . , 𝑥%#)$ .	At	this	
time,	the	distance	between	samples	𝑖	and	𝑗,	𝑑(𝐱! , 𝐱%),	is	defined	as	follows.	
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• Euclidian	distance	

𝑑(𝐱! , 𝐱%) = ,-(
#

&'"

𝑥!& − 𝑥%&)(	

• Manhattan	distance	

𝑑(𝐱! , 𝐱%) = -|
#

&'"

𝑥!& − 𝑥%&|	

• Minkowski	distance	

𝑑(𝐱! , 𝐱%) = 0-|
#

&'"

𝑥!& − 𝑥%&|)1

"/)

	

• Distance	based	on	correlation	

𝑑(𝐱! , 𝐱%) = 1 = 𝑟!% = 1 −
∑ (#
&'" 𝑥!& − 𝑥!)(𝑥%& − 𝑥%)

5∑ (#
&'" 𝑥!& − 𝑥!)(5∑ (#

&'" 𝑥%& − 𝑥%)(
	

  Here,	𝑥! =
"
+
∑ 𝑥!&
#
&'" ,	𝑥% =

"
+
∑ 𝑥%&
#
&'" .	

The	Manhattan	distance	is	the	origin	of	its	name	when	traveling	around	a	city	divided	into	
squares,	such	as	Manhattan	in	New	York	City.	In	such	an	urban	area,	for	example,	when	
moving	from	the	point	(0,0)	to	the	point	(2,3),	it	is	not	possible	to	move	diagonally	(Euclidean	
distance	√13)	because	of	the	building,	and	move	along	the	road	(Manhattan	distance	5)	is	
necessary.	Minkowski	distance	is	a	generalized	form	of	Euclidean	distance	and	Manhattan	
distance.	It	corresponds	to	the	Manhattan	distance	when	𝑝 = 1	and	the	Euclidean	distance	
when	𝑝 = 2.	

For	correlation-based	distances,	calculate	the	correlation	coefficient	“between	samples	instead	
of	between	variables”	and	subtract	one	from	it	as	the	distance.	When	the	correlation	is	1,	the	
distance	is	0.	When	the	correlation	is	0,	the	distance	is	1.	When	the	correlation	is	-1,	the	
distance	is	2.	That	is,	the	maximum	value	is	2	for	distances	based	on	the	correlation	coefficient.	
When	performing	cluster	analysis	based	on	the	similarity	of	expression	patterns	between	
genes,	“absolute	value	of	correlation”	may	be	reduced	instead	of	reducing	correlation	from	1.	
In	this	case,	the	distance	is	0	when	the	correlation	is	-1	or	1,	and	the	distance	is	1	when	the	
correlation	is	0.	

The	function	dist	can	also	calculate	the	following	distances:	Although	it	was	not	suitable	for	
this	data,	it	was	not	used,	but	depending	on	the	nature	of	the	data	to	be	analyzed,	the	distances	
described	below	may	be	appropriate.	

• Chebyshev	distance	（Set	method=“maximum”）	

𝑑(𝐱! , 𝐱%) = max
&
>|𝑥!& − 𝑥%&|?	

• Canberra	distance	（Set	method=“canberra”）	
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𝑑(𝐱! , 𝐱%) = -
|𝑥!& − 𝑥%&|
|𝑥!&| + |𝑥%&|

#

&'"

	

• Hamming	distance	（Set	method=“binary”）	

𝑑(𝐱! , 𝐱%) = -(
#

&'"

1 − 𝛿,!",,#")	

  Here,	

𝛿.,/ = {1 (𝑎 = 𝑏)
0 (𝑎 ≠ 𝑏)	

The	Chebyshev	distance	is	a	distance	based	only	on	the	difference	of	one	of	the	𝑞	features	that	
is	the	most	different.	This	distance	is	the	limit	𝑝 → ∞	of	the	Minkowski	distance.	The	Hamming	
distance	is	a	commonly	used	distance	in	information	science,	and	it	counts	the	number	of	
positions	that	do	not	match	when	comparing	values	at	the	same	position	for	a	sequence	of	the	
same	length.	For	data	that	uses	the	Hamming	distance,	𝑥!&	is	not	a	continuous	value	but	a	
discrete	value	(0,1)	in	most	cases.	

So	far	we	have	described	the	definition	of	the	distance	between	samples.	In	hierarchical	cluster	
analysis,	samples	close	to	each	other	are	grouped	into	one	cluster,	and	samples	and	clusters	or	
clusters	are	further	grouped	into	higher	level	clusters.	Therefore,	you	need	to	define	not	only	
the	distance	between	samples	but	also	the	distance	between	samples	and	clusters	or	between	
clusters.	

First,	let’s	draw	a	dendrogram	based	on	various	definitions	of	inter-cluster	distance.	In	the	
hclust	function,	the	calculation	method	(definition)	of	the	distance	between	clusters	can	be	
specified	by	the	option	method.	

pdf("fig6.pdf", width = 10, height = 10)	
d <- dist(data.mk)	
op <- par(mfrow = c(2, 3), mar = rep(0, 4))	
tre <- hclust(d, method = "complete") # default method	
myplot(tre, subpop)	
tre <- hclust(d, method = "single")	
myplot(tre, subpop)	
tre <- hclust(d, method = "average")	
myplot(tre, subpop)	
tre <- hclust(d, method = "median")	
myplot(tre, subpop)	
tre <- hclust(d, method = "centroid")	
myplot(tre, subpop)	
tre <- hclust(d, method = "ward.D2")	
myplot(tre, subpop)	
par(op)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	6.	A	dendrogram	based	on	various	inter-cluster	distance	definitions	

As	you	can	see	in	Figure	6,	the	difference	in	the	definition	of	inter-cluster	distance	is	different	
from	the	difference	in	the	definition	of	inter-sample	distance,	and	the	topology	of	the	
dendrogram	changes	significantly.	In	some	cases,	the	branch	length	becomes	negative	and	it	
causes	a	strange	dendrogram	(lower	left,	lower	center).	Also,	differences	between	clusters	may	
be	highly	emphasized	(lower	right).	It	is	difficult	to	choose	which	method	to	use	from	these	
definitions.	But	in	many	cases,	it	is	chosen	that	has	no	major	contradiction	with	known	(a	
priori)	information.	For	example,	here,	it	is	better	to	choose	one	that	is	less	inconsistent	with	
the	subpopulation	to	which	the	variety/line	belongs.	

Indicates	the	definition	of	the	distance	between	clusters	that	can	be	specified	by	the	function	
hclust.	Based	on	the	distance	between	the	samples,	𝑑(𝐱! , 𝐱%),	the	distance	between	clusters	A	
and	B,	𝑑01 ,	is	calculated	as	follows:	

• Maximum	distance	method	(complete	connection	method)	（Set	method=“complete”）	

𝑑01 = max
!∈0,%∈1

>𝑑(𝐱! , 𝐱%)?	
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• Minimum	distance	method	(single	connection	method)	（Set	method=“single”）	

𝑑01 = min
!∈0,%∈1

>𝑑(𝐱! , 𝐱%)?	

• Average	distance	method	（Set	method=“average”）	

𝑑01 =
1

𝑛0𝑛1
- -𝑑

%∈1!∈0

(𝐱! , 𝐱%)	

  Here,	𝑛0, 𝑛1	represent	the	numbers	of	samples	included	in	clusters	A	and	B,	respectively.	

In	the	following	three	definitions,	when	clusters	A	and	B	merge	to	form	a	new	cluster	C,	the	
distance	𝑑34	between	new	clusters	C	and	clusters	O	other	than	A	and	B	is	defined	as	follows.	
The	distance	between	clusters	A	and	B	is	denoted	by	𝑑01 ,	the	distance	between	clusters	A	and	
O	by	𝑑04 ,	the	distance	between	clusters	B	and	O	by	dBO	and	the	number	of	samples	contained	
in	clusters	A,	B	and	O	by	𝑛0,	𝑛1 ,	and	𝑛4 .	

• Centroid	method	（Set	method=“centroid”）	

𝑑34( =
𝑛0

𝑛0 + 𝑛1
𝑑04( +

𝑛1
𝑛0 + 𝑛1

𝑑14( −
𝑛0𝑛1

(𝑛0 + 𝑛1)(
𝑑01( 	

• Median	method	（Set	method=”median”）	

𝑑34 =
1
2𝑑04 +

1
2𝑑14 −

1
4𝑑01	

• Ward’s	method	（Set	method=”ward.D2”）	

𝑑34( =
𝑛0 + 𝑛4

𝑛0 + 𝑛1 + 𝑛4
𝑑04( +

𝑛1 + 𝑛4
𝑛0 + 𝑛1 + 𝑛4

𝑑14( −
𝑛4

𝑛0 + 𝑛1 + 𝑛4
𝑑01( 	

Let’s	compare	in	more	detail	the	two	methods	in	Figure	6	where	the	correspondence	with	the	
divided	groups	seems	clear.	

# focus on two clustering methods	
op <- par(mfrow = c(1, 2), mar = rep(0, 4))	
d <- dist(data.mk)	
tre <- hclust(d, method = "complete")	
myplot(tre, subpop, type = "phylogram")	
tre <- hclust(d, method = "ward.D2")	
myplot(tre, subpop, type = "phylogram")	
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Figure	7.	Dendrograms	of	the	longest	distance	method	(left)	and	Ward	method	(right)	
par(op)	

 

Quiz:	https://www.menti.com/ky14at8u32	
	

Cluster analysis from both sides of multidimensional data 

So	far,	varieties	and	lines	have	been	classified	into	clusters	based	on	DNA	marker	data.	Cluster	
analysis	of	varieties	and	lines	can	be	performed	based	on	trait	data	as	well	as	DNA	marker	data.	
Also,	regarding	the	same	data,	it	is	possible	to	classify	traits	having	similar	variation	patterns	
among	varieties/lines	into	the	same	cluster,	considering	them	as	targets	for	classifying	traits	
instead	of	vareties/lines.	Here	we	will	explain	such	an	approach.	



	

	

15	

15	

First,	let’s	prepare	trait	data.	Let’s	extract	trait	data	from	all	data	(alldata),	excluding	traits	not	
suitable	for	such	analysis.	

# preparation of data	
required.traits <- c("Flowering.time.at.Arkansas",	
    "Flowering.time.at.Faridpur", "Flowering.time.at.Aberdeen",	
    "Culm.habit", "Flag.leaf.length", "Flag.leaf.width",	
    "Panicle.number.per.plant", "Plant.height", "Panicle.length",	
    "Primary.panicle.branch.number", "Seed.number.per.panicle",	
    "Florets.per.panicle", "Panicle.fertility", "Seed.length",	
    "Seed.width","Brown.rice.seed.length", "Brown.rice.seed.width",	
    "Straighthead.suseptability","Blast.resistance",	
    "Amylose.content", "Alkali.spreading.value", "Protein.content")	
data.tr <- alldata[, required.traits]	
missing <- apply(is.na(data.tr), 1, sum) > 0	
data.tr <- data.tr[!missing, ]	
subpop.tr <- alldata$Sub.population[!missing]	

The	trait	data	varies	in	size	(variance)	depending	on	the	trait.	If	this	data	is	used	as	it	is,	the	
large	variance	trait	has	a	large	effect	on	the	distance	calculation,	and	the	small	variance	trait	
has	a	small	contribution	to	the	distance	calculation.	Therefore,	all	traits	are	normalized	to	
variance	1.	

# scaling	
data.tr <- scale(data.tr)	

Now	let’s	perform	cluster	analysis	with	traits	classified	as	variety/line	and	cluster	analysis	
with	traits	classified	as	trait	data.	

# perform clusetering for both varieties and traits	
d <- dist(data.tr)	
tre.var <- hclust(d, method = "ward.D2")	
d <- dist(t(data.tr))	
tre.tra <- hclust(d, "ward.D2")	
op <- par(mfrow = c(1, 2))	
myplot(tre.var, subpop.tr, type = "phylogram")	
plot(tre.tra, cex = 0.5)	
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Figure	8.	Cluster	analysis	based	on	trait	data.	Dendrograms	showing	the	relationship	between	
varieties	and	lines	(left)	and	the	relationship	between	traits	(right)	

par(op)	

From	the	dendrogram	on	the	right	side	of	Figure	8,	it	can	be	seen	that	the	traits	(Plant.	Height,	
Panicle.	Length,	Flag.	Leaf.	Length)	related	to	the	size	of	the	plant	are	closely	related	to	each	
other.	You	can	also	see	that	the	flowering	timing	(Flowering.time.at.	*****)	located	in	the	three	
environments	is	located	near	the	cluster.	In	addition,	it	is	also	clear	that	the	flag	leaf	width	
(Flag.leaf.width)	is	different	from	other	size-related	traits	and	strongly	associated	with	the	
traits	that	characterize	the	panicle.	In	this	way,	multidimensional	data	can	be	cluster	analyzed	
from	either	side.	With	this	in	mind,	you	will	be	able	to	view	the	same	data	from	a	slightly	
different	perspective.	

Note	that	the	above	analysis	can	display	results	more	visually	using	the	heatmap	function.	

# perform clustring from both sides	
pdf("fig9.pdf")	
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heatmap(data.tr, margins = c(12,2))	
dev.off()	

## quartz_off_screen 	
##                 2	

	

Figure	9.	Display	of	cluster	analysis	results	and	heatmap	of	trait	data	

There	is	also	a	heatmap	function,	heatmap.2,	which	is	included	in	the	gplots	package	(I	think	
there	are	many	other	functions).	Let’s	draw	a	heat	map	using	this.	Although	the	way	of	giving	
options	is	slightly	different,	you	can	draw	a	nice-looking	figure.	

pdf("fig9-2.pdf", height = 12)	
heatmap.2(data.tr, margins = c(12,2), col=redgreen(256), trace = "none", lhei
 = c(2,10), cexRow = 0.3)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	9-2.	Display	heat	map	of	trait	data	using	heatmap.2	function	

You	can	reflect	the	results	of	another	cluster	analysis	as	follows:	Reflect	the	result	of	the	
cluster	analysis	performed	for	the	same	data	on	the	heat	map	display.	

# perform clustering with appropriate methods	
pdf("fig10.pdf")	
heatmap(data.tr, Rowv = as.dendrogram(tre.var),	
                Colv = as.dendrogram(tre.tra),	
                RowSideColors = as.character(as.numeric(subpop.tr)),	
                labRow = subpop.tr,	
                margins = c(12, 2))	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	10.	The	result	of	changing	the	cluster	analysis	method	in	Figure	9	to	Ward’s	method	

This	can	also	be	drawn	using	the	heatmap.2	function	as	before.	

# this part is again optional	
pdf("fig10-2.pdf", height = 12)	
heatmap.2(data.tr, Rowv = as.dendrogram(tre.var),	
                Colv = as.dendrogram(tre.tra),	
                RowSideColors = as.character(as.numeric(subpop.tr)),	
                labRow = subpop.tr,	
                margins = c(12,2), col=redgreen(256), trace = "none", lhei = 
c(2,10), cexRow = 0.3)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	10-2.	The	result	of	changing	the	cluster	analysis	method	of	Figure	9-2	to	Ward’s	method	

The	heatmap	function	does	not	have	to	perform	cluster	analysis	on	the	same	data	in	both	
vertical	and	horizontal	directions.	For	example,	you	can	also	apply	the	results	of	cluster	
analysis	using	DNA	marker	data	for	the	row	side.	

# perform clustering based on marker genotypes for determining row order	
data.mk2 <- data.mk[!missing, ]	
d <- dist(data.mk2)	
tre.mrk <- hclust(d, method = "ward.D2")	
pdf("fig11.pdf")	
heatmap(data.tr, Rowv = as.dendrogram(tre.mrk),	
                Colv = as.dendrogram(tre.tra),	
                RowSideColors = as.character(as.numeric(subpop.tr)),	
                labRow = subpop.tr,	
                margins = c(12, 2))	
dev.off()	
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## quartz_off_screen 	
##                 2	

	

Figure	11.	Relationship	between	the	results	of	cluster	analysis	based	on	genetic	marker	data	and	
traits	

This	can	also	be	drawn	using	the	heatmap.2	function	as	before.	

# this part is optional	
pdf("fig11-2.pdf", height = 12)	
heatmap.2(data.tr, Rowv = as.dendrogram(tre.mrk),	
                Colv = as.dendrogram(tre.tra),	
                RowSideColors = as.character(as.numeric(subpop.tr)),	
                labRow = subpop.tr,	
                margins = c(12,2), col=redgreen(256), trace = "none", lhei = 
c(2,10), cexRow = 0.3)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Fig.	11-2.	Relationship	between	the	results	of	cluster	analysis	and	traits	based	on	genetic	marker	
data	expressed	using	heatmap.2	function	

Classification based on hierarchical cluster analysis 

Sometimes	you	want	to	delineate	samples	into	places	where	there	is	similarity	between	
samples	and	to	categorize	samples	discretely	into	groups.	This	section	describes	how	to	
classify	samples	into	a	fixed	number	of	clusters	based	on	the	results	of	hierarchical	cluster	
analysis.	

Based	on	the	results	of	hierarchical	cluster	analysis	based	on	DNA	marker	data,	let’s	classify	
varieties/lines	into	five	groups.	Five	is	a	number	according	to	the	number	of	division	groups	to	
which	varieties/lines	belong.	From	the	result	of	hierarchical	cluster	analysis,	we	use	the	
function	cutree	to	find	discrete	groups.	

# classify samples with the cutree function	
d <- dist(data.mk)	
tre <- hclust(d, method = "ward.D2")	
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cluster.id <- cutree(tre, k = 5)	
head(cluster.id, 10)	

##  1  3  4  5  6  7  8  9 10 11 	
##  1  2  3  4  3  5  5  1  1  2	

Let’s	illustrate	the	results	of	classification	into	five	groups	based	on	cluster	analysis.	

# visualize the result	
op <- par(mfrow = c(1,2), mar = rep(0, 4))	
myplot(tre, cluster.id, type = "phylogram")	
myplot(tre, subpop, type = "phylogram", direction = "leftwards")	

	

Fig.	12.	Relationship	between	classification	by	cluster	analysis	(left)	and	divided	groups	(right)	

par(op)	

Let’s	check	the	relationship	between	classification	and	subpopulation	based	on	cluster	analysis	
by	creating	cross	tabulation	table.	
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# obtain the cross table of classification	
table(cluster.id, subpop)	

##           subpop	
## cluster.id ADMIX AROMATIC AUS IND TEJ TRJ	
##          1     5        0   0   0  84   0	
##          2    14        0   0  80   0   0	
##          3     1        0  52   0   0   0	
##          4     2       14   0   0   0   0	
##          5    34        0   0   0   3  85	

It	can	be	seen	that	the	two	match	very	well,	except	for	the	three	varieties	/	lines	of	Indica	
(IND).	This	is	thought	to	be	because	the	divided	population	structure	itself	was	estimated	
based	on	DNA	marker	data.	In	addition,	it	is	also	understood	that	varieties	that	are	estimated	
to	be	a	mixture	of	multiple	subpopulations	(ADMIX)	are	classified	into	various	groups.	

Let’s	confirm	the	result	of	classification	by	hierarchical	cluster	analysis	on	the	principal	
component	axis.	

# visualize the result in the PCA space	
pca <- prcomp(data.mk)	
op <- par(mfrow = c(1,2))	
plot(pca$x[,1:2], pch = cluster.id, col = as.numeric(subpop))	
plot(pca$x[,3:4], pch = cluster.id, col = as.numeric(subpop))	

	

Figure	13.	Classification	by	cluster	analysis	and	relationship	between	subgroups	
par(op)	

 

Quiz:	https://www.menti.com/ky14at8u32	
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Non-hierarchical clustering 

When	classifying	into	a	certain	number	of	groups,	it	is	not	necessary	to	classify	hierarchically.	
Here	we	introduce	the	k-means	method,	which	is	one	of	the	non-hierarchical	cluster	analysis	
methods.	

For	the	same	data	as	before,	let’s	classify	it	into	five	groups	using	the	function	kmeans.	

# kmeans clustering	
kms <- kmeans(data.mk, centers = 5)	
kms	

The	𝑘-means	method	performs	classification	into	the	number	of	groups	determined	by	the	
following	algorithm.	

1. randomly	choose	𝑘	samples	as	𝑘	cluster	centers	

2. Find	the	distance	between	all	data	points	and	𝑘	cluster	centers,	and	classify	each	data	
point	into	the	closest	cluster	(centering	on	the	center	of	gravity)	

3. Update	the	center	(center	of	gravity)	of	the	formed	cluster	

4. Repeat	2-3	until	the	cluster	center	(center	of	gravity)	does	not	change	

In	the	𝑘-means	method,	the	results	may	vary	depending	on	the	first	randomly	chosen	sample.	
In	fact,	let’s	repeat	the	analysis	with	the	same	data	and	check	the	variation	of	the	results.	

# repeat kmeans clustering	
for(i in 1:5) {	
    kms <- kmeans(data.mk, centers = 5)	
    print(table(kms$cluster, subpop))	
}	

##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    17        0   0   0  86   0	
##   2    12        0   0   0   1  32	
##   3    13        0  52  80   0   0	
##   4    11        0   0   0   0  53	
##   5     3       14   0   0   0   0	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1     0        0   0   0  58   0	
##   2     2       14   0   0   0   0	
##   3    32        0   0   0  29   0	
##   4    10        0   0   0   0  85	
##   5    12        0  52  80   0   0	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    20       13   0   0  86   0	
##   2    14        0   0   0   0  54	
##   3     5        1  52   1   0   0	
##   4     8        0   0  79   0   0	
##   5     9        0   0   0   1  31	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    18        0   0   0  40   0	
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##   2    25       14   0   0   1  85	
##   3     1        0   0   0  46   0	
##   4     3        0  52   1   0   0	
##   5     9        0   0  79   0   0	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1     3       14   0   0   0   0	
##   2    12        0   0  80   0   0	
##   3     1        0  52   0   0   0	
##   4    17        0   0   0  86   0	
##   5    23        0   0   0   1  85	

Each	time	we	run	it,	we	get	different	results.	This	is	due	to	the	strong	dependence	on	the	initial	
value	of	the	algorithm	described	above.	So,	let’s	repeat	the	analysis	with	different	initial	values.	
Here,	we	do	the	calculation	based	on	50	different	initial	values.	

# start from multiple sets of initial points	
for(i in 1:5) {	
    kms <- kmeans(data.mk, centers = 5, nstart = 50)	
    print(table(kms$cluster, subpop))	
}	

##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1     3       14   0   0   0   0	
##   2    12        0   0  80   0   0	
##   3    23        0   0   0   1  85	
##   4    17        0   0   0  86   0	
##   5     1        0  52   0   0   0	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    17        0   0   0  86   0	
##   2     3       14   0   0   0   0	
##   3     1        0  52   0   0   0	
##   4    12        0   0  80   0   0	
##   5    23        0   0   0   1  85	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    23        0   0   0   1  85	
##   2     3       14   0   0   0   0	
##   3    12        0   0  80   0   0	
##   4     1        0  52   0   0   0	
##   5    17        0   0   0  86   0	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1     1        0  52   0   0   0	
##   2    17        0   0   0  86   0	
##   3    12        0   0  80   0   0	
##   4     3       14   0   0   0   0	
##   5    23        0   0   0   1  85	
##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    12        0   0  80   0   0	
##   2    17        0   0   0  86   0	
##   3    23        0   0   0   1  85	
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##   4     3       14   0   0   0   0	
##   5     1        0  52   0   0   0	

Unlike	before,	you	can	see	that	the	results	are	stable.	Note	that	although	the	“number”	of	the	
group	into	which	each	sample	is	classified	varies	among	different	analyzes,	this	is	not	a	
particular	problem	because	it	is	an	arbitrary	number	assigned	to	five	groups.	

Let’s	create	a	cross-tabulation	table	and	check	the	relationship	between	groups	classified	by	𝑘-
means,	groups	classified	by	hierarchical	cluster	analysis,	and	division	groups	to	which	
varieties	/	lines	belong.	

# compare results	
table(kms$cluster, subpop)	

##    subpop	
##     ADMIX AROMATIC AUS IND TEJ TRJ	
##   1    12        0   0  80   0   0	
##   2    17        0   0   0  86   0	
##   3    23        0   0   0   1  85	
##   4     3       14   0   0   0   0	
##   5     1        0  52   0   0   0	

table(cluster.id, subpop)	

##           subpop	
## cluster.id ADMIX AROMATIC AUS IND TEJ TRJ	
##          1     5        0   0   0  84   0	
##          2    14        0   0  80   0   0	
##          3     1        0  52   0   0   0	
##          4     2       14   0   0   0   0	
##          5    34        0   0   0   3  85	

table(kms$cluster, cluster.id)	

##    cluster.id	
##       1   2   3   4   5	
##   1   0  92   0   0   0	
##   2  88   1   0   0  14	
##   3   0   1   0   0 108	
##   4   1   0   0  16   0	
##   5   0   0  53   0   0	

From	cross-tabulation	tables,	it	can	be	seen	that	varieties	and	lines	belonging	to	the	
subpopulations	other	than	ADMIX	and	IND	are	classified	in	the	same	way	by	𝑘-means	and	
hierarchical	cluster	analysis.	Looking	at	the	third	crosstabulation	table,	the	classification	
results	of	both	methods	are	almost	identical,	while	some	differences	can	be	seen.	This	is	
mainly	due	to	the	fact	that	the	classification	of	varieties/lines	in	which	the	subpopulation	is	
ADMIX	(mixed)	differs	in	both	methods.	

Let’s	confirm	the	result	of	classification	by	𝑘-means	method	and	hierarchical	cluster	analysis	
by	plotting	on	principal	component	axis.	

# match id between the results of kmeans and hclust	
convert.table <- apply(table(kms$cluster, cluster.id), 1, which.max)	
convert.table	
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## 1 2 3 4 5 	
## 2 1 5 4 3	

cluster.id.kms <- convert.table[kms$cluster]	
pdf("fig14.pdf", width = 8, height = 8)	
op <- par(mfrow = c(2,2))	
plot(pca$x[,1:2], pch = cluster.id, col = as.numeric(subpop), main = "hclust
")	
plot(pca$x[,3:4], pch = cluster.id, col = as.numeric(subpop), main = "hclust
")	
plot(pca$x[,1:2], pch = cluster.id.kms, col = as.numeric(subpop), main = "kme
ans")	
plot(pca$x[,3:4], pch = cluster.id.kms, col = as.numeric(subpop), main = "kme
ans")	
par(op)	
dev.off()	

## quartz_off_screen 	
##                 2	
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Figure	14.	Classification	by	hierarchical	cluster	analysis	(top)	and	k-means	(bottom)	Relationship	
between	the	score	and	the	principal	component	score	

 

Quiz:	https://www.menti.com/ky14at8u32	
	

Determination of appropriate number of groups 

The	number	of	groups	classified	up	to	this	point	has	been	set	to	5	according	to	the	number	of	
divided	groups.	What	should	we	do	to	check	if	the	number	of	5	groups	is	really	appropriate?	
One	way	to	determine	the	appropriate	number	of	groups	is	to	classify	them	into	various	
numbers	of	groups	and	determine	the	degree	of	decrease	in	the	within	groups	sum	of	squares	
at	that	time.	there	is.	As	explained	in	the	analysis	of	variance,	the	sum	of	squares	is	divided	into	
the	sum	of	squares	between	groups	and	the	sum	of	squares	within	groups.	Therefore,	when	
the	number	of	groups	is	1,	the	sum	of	squares	is	the	sum	of	squares	within	groups.	Then,	as	the	
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number	of	groups	increases	to	2,	3,	4	…,	the	sum	of	squares	between	groups	increases	and	the	
sum	of	squares	within	groups	decreases.	When	the	number	of	groups	finally	matches	the	
number	of	samples,	the	sum	of	squares	within	groups	becomes	0.	Therefore,	the	rule	of	
minimizing	the	sum	of	squares	within	a	group	is	meaningless	because	the	number	of	groups	is	
always	the	number	of	samples.	Therefore,	as	with	the	rules	for	determining	the	number	of	
components	in	principal	component	analysis,	find	the	point	where	the	reduction	of	the	sum	of	
squares	within	a	group	changes	from	a	sudden	change	to	a	gradual	change,	and	use	it	as	the	
number	of	groups	to	adopt.	

Now	let’s	change	the	number	of	groups	from	1	to	10	and	calculate	the	sum	of	squares	within	a	
group.	Graphically	illustrate	how	it	decreases.	

# visualize within-group and between-groups sum of squares	
n <- nrow(data.mk)	
wss <- rep(NA, 10)	
wss[1] <- (n - 1) * sum(apply(data.mk, 2, var))	
for(i in 2:10) {	
    print(i)	
    res <- kmeans(data.mk, centers = i, nstart = 50)	
    wss[i] <- sum(res$withinss)	
}	

## [1] 2	
## [1] 3	
## [1] 4	
## [1] 5	
## [1] 6	
## [1] 7	
## [1] 8	
## [1] 9	
## [1] 10	

plot(1:10, wss, type = "b", xlab = "Number of groups",	
             ylab = "Within groups sum of squares")	
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Figure	15.	Change	in	the	within	group	variation	when	the	number	of	clusters	is	1	to	10	by	k-
means	method	

Looking	at	Fig.	15,	we	can	see	that	the	decrease	in	the	within	group	sum	of	squares	becomes	
linear	after	the	number	of	clusters	exceeds	five.	Also	from	this	figure,	the	number	5	is	
considered	to	be	a	suitable	number	of	groups.	

Detection of Ambiguous Classification Samples 

So	far,	each	sample	has	always	been	classified	into	one	group.	Then,	among	the	samples	
classified	into	a	certain	group,	there	will	be	those	that	are	clearly	classified	into	that	group	and	
those	that	are	“barely”	classified	into	that	group.	In	order	to	clarify	the	certainty	of	
classification,	it	is	useful	to	be	able	to	detect	a	sample	with	an	ambiguous	classification	like	the	
latter	by	some	standard.	Here,	we	will	introduce	a	method	to	evaluate	classification	ambiguity	
based	on	statistics	called	shadow	value	(Everitt	and	Hothorn	2011,	An	introduction	to	applied	
multivariate	analysis	with	R.	Springer).	

In	the	kms	function,	the	position	of	the	center	of	gravity	of	each	group	determined	by	the	𝑘-
means	method	is	calculated.	Here,	we	calculate	the	distance	to	the	center	of	gravity	of	these	
groups	from	each	sample,	calculate	the	distance	to	the	nearest	group	and	the	distance	to	the	
next	closest	group,	and	evaluate	the	ambiguity	based	on	the	difference.	

First	we	calculate	the	distance	between	all	samples	and	group	centroids	using	the	function	
rdist	which	is	included	in	the	package	fields.	
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# calculate distance to the centers of five groups	
d2ctr <- rdist(kms$centers, data.mk)	
d2ctr	

apply(d2ctr, 2, which.min)	

##   [1] 2 1 5 4 5 3 3 2 2 1 4 5 2 4 1 5 5 3 3 3 3 3 3 1 2 1 1 3 5 3 4 1 5 4 
3 5 5	
##  [38] 2 2 4 3 2 2 1 5 3 2 1 2 2 2 3 1 2 3 3 1 1 3 1 3 1 1 5 2 1 5 2 3 5 3 
5 3 2	
##  [75] 3 4 2 3 3 2 3 2 5 1 3 3 1 1 4 2 3 2 3 1 2 1 3 2 3 1 4 1 1 2 1 1 5 1 
2 2 3	
## [112] 1 1 3 3 1 1 2 2 1 1 3 1 3 3 2 5 5 2 2 1 2 2 1 4 1 1 1 3 3 1 3 1 2 3 
1 1 3	
## [149] 3 2 5 2 2 2 3 3 2 2 3 3 1 3 4 2 1 3 1 3 5 3 3 1 2 1 1 1 1 3 3 3 3 3 
3 3 2	
## [186] 2 4 1 2 2 1 5 1 2 2 1 1 3 2 3 3 1 3 2 3 2 2 2 1 2 3 1 1 1 2 2 3 1 4 
5 2 2	
## [223] 2 2 2 2 1 2 2 1 3 3 2 5 2 2 2 3 2 2 2 1 3 3 2 2 2 2 2 1 1 2 2 1 1 2 
2 2 2	
## [260] 1 2 2 3 3 3 2 5 1 5 1 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 2 2 3 5 1 2 1 
4 5 3	
## [297] 2 4 5 5 3 1 1 3 3 5 2 1 5 5 5 2 3 2 2 3 2 5 5 5 4 3 2 3 5 3 2 3 3 1 
3 2 2	
## [334] 3 3 3 3 3 3 3 1 3 1 1 3 3 1 3 3 1 3 3 1 3 3 3 3 3 1 1 3 1 5 3 2 4 2 
1 1 1	
## [371] 2 3 5 2	

head(kms$cluster, 10)	

##  1  3  4  5  6  7  8  9 10 11 	
##  2  1  5  4  5  3  3  2  2  1	

The	𝑘-means	classifies	each	sample	into	the	closest	group	to	the	center	of	gravity,	as	
mentioned	earlier.	Therefore,	note	that	the	two	results	displayed	in	the	upper	box	match.	

From	the	distances	calculated	for	each	sample,	you	can	use	the	min	function	to	derive	the	
distance	to	the	nearest	centroid.	But	how	do	you	get	the	distance	to	the	second	closest	center	
of	gravity?	Here,	we	realize	this	by	creating	a	self-made	function	nth.min.	The	self-made	
function	nth.min	is	a	function	that	rearranges	the	array	given	as	the	argument	𝑥	in	order	of	
size	(ascending	order)	and	returns	the	𝑛th	value.	

# prepare own function find the second best	
nth.min <- function(x, n) {	
    sort(x)[n]	
}	
nth.min(-10:10, 3)	

## [1] -8	

d.1st <- apply(d2ctr, 2, min)	
d.2nd <- apply(d2ctr, 2, nth.min, n = 2)	

When	the	command	in	the	upper	box	is	executed,	d.1st	is	assigned	the	distance	from	each	
sample	to	the	nearest	centroid,	and	d.2nd	is	assigned	the	distance	to	the	second	closest	
centroid.	
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Next,	let’s	calculate	the	shadow	value.	The	shadow	value	for	the	ith	sample	is	defined	as	

𝑠(𝐱!) =
2𝑑(𝐱! , 𝑐(𝐱!))

𝑑(𝐱! , 𝑐(𝐱!)) + 𝑑(𝐱! , 𝑐̃(𝐱!))
	

.	Where	𝑑(𝐱! , 𝑐(𝐱!))	is	the	distance	from	the	observed	value	of	the	𝑖th	sample	𝐱! 	to	the	centroid	
of	the	nearest	group	(the	centroid	of	the	group	into	which	the	sample	was	classified),	and	
𝑑(𝐱! , 𝑐̃(𝐱!))	represents	the	distance	to	the	centroid	of	the	second	closest	group.	This	value	is	
from	0	to	1.	If	this	value	is	close	to	0,	it	indicates	that	the	sample	is	located	near	the	center	of	
gravity	of	the	classified	group;	conversely,	if	it	is	close	to	1,	the	gravity	center	of	the	classified	
group	and	the	second	closest	group	are	It	means	that	the	distance	to	the	center	of	gravity	is	
almost	the	same.	Therefore,	in	order	to	detect	a	sample	whose	classification	is	ambiguous,	it	
means	that	shadow	value	should	find	a	sample	close	to	1.	

Let’s	calculate	the	shadow	value	using	the	distances	d.1st	and	d.2nd	calculated	above	and	find	
out	if	the	value	is	0.9	or	more.	

# evaluate unclearness of classificatinos (shadow values)	
shadow <- 2 * d.1st / (d.1st + d.2nd)	
unclear <- shadow > 0.9	

The	result	of	detection	is	assigned	to	“unclear”.	If	this	value	is	T	(true),	the	classification	is	
considered	ambiguous,	if	it	is	F	(false),	the	classification	is	considered	relatively	clear.	

Now	let’s	draw	a	scatter	plot	on	the	principal	component	axis,	representing	the	●	of	the	sample	
whose	classification	is	determined	to	be	ambiguous.	

# visualize the result	
cluster.id.kms[unclear] <- 20	
op <- par(mfrow = c(1,2))	
plot(pca$x[,1:2], pch = cluster.id.kms, col = as.numeric(subpop), main = "kme
ans")	
plot(pca$x[,3:4], pch = cluster.id.kms, col = as.numeric(subpop), main = "kme
ans")	

	

Figure	16.	Scatter	plot	of	the	sample	with	unclear	classification	by	●	
par(op)	
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It	can	be	seen	from	Fig.	16	that	most	of	the	varieties	and	lines	(black	points)	in	which	the	
subpopulations	are	ADMIX	(mixed)	are	scattered	with	●.	In	this	way,	by	evaluating	the	
ambiguity	(in	other	words,	the	certainty)	of	the	classification	of	each	sample,	it	becomes	
possible	to	grasp	the	classification	result	in	more	detail.	In	this	example,	we	were	able	to	find	
varieties/lines	that	seemed	to	be	mixed	backgrounds	resulting	from	multiple	subpopulations.	

Selection of representative sample 

Cluster	analysis	can	also	be	used	to	select	a	small	number	of	representative	samples	from	a	
large	number	of	samples.	For	example,	classification	can	be	performed	by	cluster	analysis	
based	on	existing	data	collected	for	a	large	number	of	genetic	resources,	and	representative	
varieties/lines	can	be	selected	based	on	the	classification	results.	In	this	way,	representative	
varieties/lines	are	often	selected,	and	field	trials	and	molecular	biological	experiments	that	
require	time	and	cost	are	often	performed	using	these	varieties/lines.	

Here,	we	introduce	the	𝑘-medoids	method	as	a	method	of	cluster	analysis	suitable	for	selection	
of	such	representative	samples.	The	𝑘-medoids	method	is	similar	to	the	𝑘-means	method,	but	
instead	of	grouping	based	on	the	distance	to	the	center	of	gravity	of	the	group,	grouping	based	
on	the	distance	to	the	representative	samples	of	the	groups	(medoids).	More	specifically,	this	
algorithm	does	not	use	the	center	of	a	cluster	as	the	center	of	gravity,	but	as	the	coordinate	
point	of	the	representative	sample	of	the	group.	

Let’s	select	48	samples	from	229	varieties	and	lines	contained	in	the	phenotypic	data	(data.tr)	
that	are	representative	of	the	𝑘-medoids	method.	The	function	pam	that	executes	the	𝑘-
medoids	method	is	included	in	the	package	cluster.	Of	the	results	obtained	by	the	𝑘-medoids	
method,	the	ID	of	the	medoids	(id.med)	is	the	IDs	of	the	samples	selected	as	representatives.	

# select 48 varieties/lines (by classifying all samples into 48 groups)	
n.sel <- 48	
kmed <- pam(data.tr, k = n.sel)	
kmed	

kmed$id.med	

##  [1]   1  28   8 192 121  80   7  53  10 218  33  15  63 191  18  83 126  
27  93	
## [20]  98  36  38 202 106  52  54 148 136 101  62 211 161  86 145  85  91  
92 207	
## [39] 123 203 124 159 178 137 138 162 166 214	

Note	that	the	phenotypic	data	(data.tr)	used	here	has	already	been	normalized	to	have	
variance	1.	If	you	perform	the	same	analysis	on	your	own	data,	carefully	consider	whether	it	is	
necessary	to	scale	the	data,	and	if	necessary,	use	the	scale	function	to	scale.	

Now,	let’s	illustrate	the	variation	in	the	samples	selected	as	representatives	with	scatter	plots	
on	the	principal	component	axis.	

# look at the distribution of 48 varieties/lines selected as medoids	
pca.tr <- prcomp(data.tr, scale = T)	
kmed$id.med	

##  [1]   1  28   8 192 121  80   7  53  10 218  33  15  63 191  18  83 126  
27  93	
## [20]  98  36  38 202 106  52  54 148 136 101  62 211 161  86 145  85  91  
92 207	
## [39] 123 203 124 159 178 137 138 162 166 214	
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pch <- rep(1, nrow(data.tr))	
pch[kmed$id.med] <- 19	
op <- par(mfrow = c(1,2))	
plot(pca.tr$x[,1:2], col = as.numeric(subpop.tr), pch = pch)	
plot(pca.tr$x[,3:4], col = as.numeric(subpop.tr), pch = pch)	

	

Figure	17.	Distribution	of	representative	48	varieties	/	lines	selected	by	k-medoids	method	
par(op)	

Finally,	let’s	compare	the	distribution	of	principal	component	scores	of	48	varieties	/	lines	
selected	using	the	k-medoids	method	with	the	distribution	of	principal	component	scores	of	all	
varieties	/	lines	by	drawing	a	histogram.	

# compare histogram between three datasets (all, 48 selected k-medoids, 48 se
lected randomly)	
op <- par(mfcol = c(2,4))	
for(i in 1:4) {	
    res <- hist(pca.tr$x[,i], main = paste("PC", i, "all"))	
    hist(pca.tr$x[kmed$id.med, i], breaks = res$breaks, main = paste("PC", i,
 "k-medoids"))	
}	
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Figure	18.	Distribution	of	principal	component	scores	of	all	varieties	/	lines	(top)	and	varieties	/	
lines	selected	as	representatives	(bottom)	

par(op)	

It	can	be	seen	from	Fig.	18	that	the	48	varieties	/	lines	selected	by	the	𝑘-medoids	method	
represent	the	variation	of	the	traits	possessed	by	all	the	varieties	/	lines.	

Thus,	cluster	analysis	can	also	be	used	to	select	a	smaller	number	of	representatives	from	a	
larger	number	of	samples.	It	would	be	useful	to	remember	this	use	of	cluster	analysis	as	well.	

	

Quiz:	https://www.menti.com/ky14at8u32	
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Report assignment 
1. From	alldata,	extract	data	on	particle.number.per.plant,	particle.length,	

primary.particle.branch.number,	seed.number.per.particle,	and	florets.per.particle.	When	
the	following	analyses	(2	to	5)	are	performed	using	this	data,	answer	whether	these	
variables	should	be	standardized	to	mean	0	and	variance	1.	Also,	standardize	the	data	if	
necessary	before	performing	the	following	analysis.	

2. Based	on	the	data	in	1,	calculate	Euclidean	distances	between	cultivars/lines,	perform	a	
cluster	analysis	using	the	Ward	method,	and	draw	a	dendrodiagram.	

3. Based	on	the	data	in	1,	calculate	the	Euclidean	distances	both	between	varieties/lines	
and	between	traits,	perform	a	cluster	analysis	using	the	Ward	method,	and	then	draw	a	
heat	map	similar	to	Figure	11-2.	

4. Based	on	the	results	of	the	cluster	analysis	in	2,	classify	them	into	five	groups	(k	=	5).	Also,	
use	the	k-means	method	to	classify	them	into	five	groups	(centers	=	5);	compare	the	two	
classifications	with	a	cross-tabulation	table.	

5. Based	on	the	data	in	1,	perform	a	k-medoids	method	to	divide	the	data	into	20	groups	(k	
=	20).	Based	on	the	results,	20	varieties/lines	are	selected	as	representatives.	Also,	
perform	a	principal	component	analysis	of	the	same	data	and	draw	a	similar	figure	to	
Figure	17.	

Submission	method:	

• Create	a	report	as	a	pdf	file	and	submit	it	to	ITC-LMS.	
• When	you	cannot	submit	your	report	to	ITC-LMS	with	some	issues,	send	the	report	to	

report@iu.a.u-tokyo.ac.jp	
• Make	sure	to	write	the	affiliation,	student	number,	and	name	at	the	beginning	of	the	

report.	
• The	deadline	for	submission	is	May	28th.	


