# If necessary, please list the packages you need here
データをロードする。
# this data set was analyzed in Zhao 2011 (Nature Communications 2:467)
pheno <- read.csv("RiceDiversityPheno.csv", stringsAsFactors = T)
line <- read.csv("RiceDiversityLine.csv", stringsAsFactors = T)
line.pheno <- merge(line, pheno, by.x = "NSFTV.ID", by.y = "NSFTVID")
解析対象の変数を準備する。
mydata <- data.frame(
Panicle.number.per.plant = line.pheno$Panicle.number.per.plant,
Panicle.length = line.pheno$Panicle.length,
Primary.panicle.branch.number = line.pheno$Primary.panicle.branch.number,
Seed.number.per.panicle = line.pheno$Seed.number.per.panicle,
Florets.per.panicle = line.pheno$Florets.per.panicle)
missing <- apply(is.na(mydata), 1, sum) > 0
mydata <- mydata[!missing, ]
subpop <- line.pheno$Sub.population[!missing]
Write your answaer and comment here
# write R code required for the answer
# write R code required for the answer
Write your answaer and comment here
# write R code required for the answer
Write your answaer and comment here
# write R code required for the answer
# write R code required for the answer
Write your answaer and comment here