平成24年4月19日 構造バイオインフォマティクス基礎

立体構造データベースと その利用

東京大学大学院農学生命科学研究科 アグリバイオインフォマティクス 教育研究ユニット 寺田 透

講義の予定

- 1. 4月19日(木) 担当:寺田 透 内容:立体構造データベースの利用と立体構造データの可視化
- 4月26日(木)
 担当:永田宏次
 内容:X線結晶構造解析による立体構造決定のインフォマティクス
- 5月10日(木)
 担当:寺田 透
 内容:立体構造からの情報抽出
- 4. 5月17日(木) 担当:清水謙多郎 内容:立体構造のモデリング

- タンパク質立体構造データベース
 - 検索 – データのダウンロード
- 立体構造データの可視化
- 立体構造データフォーマット
- 配列データベースとの連携
- 実習

立体構造データベース

- Protein Data Bank (PDB)
- タンパク質、核酸などの生体高分子の立体構 造を収集、公開している世界で唯一のデータ ベース
- 2012年4月時点でのエントリ数は約81,000
- 主なWebサイト
 - 米国: http://www.rcsb.org/
 - 欧州 : http://www.ebi.ac.uk/pdbe/
 - 日本: http://www.pdbj.org/

データベースへのアクセス

RCSBのサイト(http://www.rcsb.org/)

PROTEIN DATA BANK	S PDB-101	An Information Portal to Biologica As of Tuesday Apr 10, 2012 at 5 PM PDT there are 80710 Strue	A MEMBER OF THE PDB I Macromolecular Structures ctures PDB Statistics S ?
Search All Categories:	Section 2018 States Author M Macromolecule Section 2018 States and Section	Sequence C Ligand ?	🖁 Browse 🔍 Advanced
Customize This Page + MyPDB Hide Login to your Account Register a New Account	Biological Macromolecu Full Description Featured Molecules	lar Resource ^{Hide}	New Structures Hide Latest Release New Structure Papers Search Unreleased Entries
t Home Hide News & Publications Usage/Reference Policies Deposition Policies Website FAQ Deposition FAQ Contact Us	Molecule of the Month Ras Protein Cells are constantly send	List View of Archive By: Title Date Category	* New Features Hide Links to DrugBank Latest features released: Website Release Archive:
About Us Careers External Links Sitemap New Website Features	other cells, and also mar clear and strong, so that cytoplasm. Full Article	naging the internal needs of the cell. These messages need to be t they can be heard over the busy bustle inside the crowded	RCSB PDB News Hide Weekly Quarterly Yearly 2012-04-10 Spring Newclatter

- 立体構造データに対するテキスト検索
- 例: "HIV Protease", aquaporin, etc.
- PDB ID
 - 数字1文字と英数字3文字からなる、各立体構造デー タに固有のID
 - 例:1HVR, 1J4N, etc.

• 上部のタブをクリックして表示を切り替える

- Summary: 文献、組成
- Sequence: アミノ酸配列、2次構造
- Annotations: 立体構造分類、ファミリー分類
- Methods: 立体構造決定法

データのダウンロード

 右上の「Download Files」から立体構造デー タをダウンロードできる

PROTEIN DATA BAN	An Information Portal to Bio As of Tuesday Apr 10, 2012 at 5 PM PDT there are 807	A MEMBER OF THE PDB Diogical Macromolecular Structures '10 Structures PDB Statistics S @
Search All Categories:	All Categories Author M Macromolecule P Sequence C Ligand O Image: Sequence C Ligand O Image: Sequence C Ligand O	् 🖁 Browse 🔍 Advanced
t MyPDB Hide Login to your Account Register a New Account t Home Hide News 9. Publications	Summary Sequence Annotations Seq. Similarity 3D Similarity Literature Biol. & Chem. Methods Geometry Links RATIONAL DESIGN OF POTENT, BIOAVAILABLE, NONPEPTIDE CYCLIC UREAS AS HIV PROTEASE INHIBITORS 1	

• 「PDB File (Text)」を選び、デスクトップの保 存する

立体構造データの可視化

- 1. PDB ID「1HVR」を検索し表示
- 2. ファイルをダウンロードし、デスクトップに保存
- 3. Chimera 1.5.2のアイコン をダブルクリックし起動

4. メニューの「File」→「Open」 で1HVR.pdbを開く

UCSF Chimeraの操作(1)

- 回転
 - マウスの左ボタンを押しながらドラッグ
- 並進
 - マウスのホイールを押しながらドラッグ
- ・ズーム

- マウスの右ボタンを押しながらドラッグ - マウスのホイールを回転

UCSF Chimeraの操作(2)

- 選択(selection)
 - 「Ctrl」キーを押しながら左クリック
 - 選択を追加する時は、「Ctrl」と「Shift」キーを押しなが ら左クリック
 - 何もないところを「Ctrl」キーを押しながら左クリックす ると解除
 - 「↑」キーで、選択範囲を原子→残基→チェイン→分 子の順に拡大

 フォーカス
 –メニューの「Actions」→「Focus」で選択された原子を 拡大表示する

表示の変更(1)

- メニューの「Actions」を用いる
 - ∫Actions J→∫Atoms/Bonds J →∫show J
 - Cartions J→ Ribbon J
 → hide J
 - 3. $\lceil \text{Actions} \rfloor \rightarrow \lceil \text{Color} \rfloor$ $\rightarrow \lceil \text{by element} \rfloor$
- 選択している場合は、選 択された原子の表示が 変わる

表示の変更(2)

- •「Actions」→「Surface」 →「show」で分子表面 を表示
- 「Tools」→
 「Surface/Binding Analysis」→
 「Coulombic Surface Coloring」で静電ポテン
 シャルで色分け
 (少し時間がかかる)

青:正に帯電 赤:負に帯電

配列の表示

メニューの「Tools」→「Sequence」→ 「Sequence」

🔍 1HVR.pdb (#0) chain A	
File Edit Structure Headers Numberings Tree Tools Preferences	
1HVR.pdb (#0) chain A 1 PQVTLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRV	WKPKMIGGI
1HVR.pdb (#0) chain A51 GGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTC	QIGATLNF
1HVR.pdb (#0) chain A (99 non-gap residues)	Quit Hide Help
😡 1HVR.pdb (#0) chain B	
IHVR.pdb (#0) chain B File Edit Structure Headers Numberings Tree Tools Preferences	
1HVR.pdb (#0) chain B File Edit Structure Headers Numberings Tree Tools Preferences 1HVR.pdb (#0) chain B 1 PQVT LWQR PLVT IKIGGQLKEALLD TGADD TVLEEMSLPGRV	MKPKMIGGI
1HVR.pdb (#0) chain B File Edit Structure Headers Numberings Tree Tools Preferences 1HVR.pdb (#0) chain B 1 PQVTLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRV 1HVR.pdb (#0) chain B 1 GGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTC	MKPKMIGGI QIGATLNF

アミノ酸を選択すると、立体構造上でも選択される

- マウスの左ドラッグで領域を選択 --「Shift」キーを押しながら左ドラッグで追加

相互作用の検出(1)

- 水素結合の検出
 - X線結晶構造解析から得られた構造には水素原子の座標が 含まれていないことが多いため、重原子間の距離で判定する
 - 水素結合を形成する重原子(窒素や酸素)間の距離は概ね2.8 Å~ 3.5 Å
- メニューの「Select」→「Residue」→
 「XK2」でリガンドを選択
- メニューの「Tools」→「Structure Analysis」→「FindHBond」を選択し 右のように設定 →水素結合が青色の線で表示される

相互作用の検出(2)

- 疎水性相互作用は原子間距離で検出
- リガンドXK2を選択
- メニューの「Select」→「Zone」を 選択し、右のように設定し「OK」 →リガンドから5 Åにある残基が 選択される

「Select」→「Name Selection」で選択範囲を保存して後で呼び出すことができる

データの保存

- メニューの「File」→「Save Session As」で作業状態を保存できる
- 保存した作業状態は、「File」→「Restore Session」で呼び出すことができる
- 画像は「File」→「Save Image」で保存できる
- 「File」→「Close Session」で立体構造データ は閉じられ、初期状態に戻る

参考:可視化ソフトウェア入手先

- RasMol(http://www.openrasmol.org/)
- PyMol(http://www.pymol.org/)
- Swiss PDB Viewer(http://spdbv.vital-it.ch/)
- UCSF Chimera (http://www.cgl.ucsf.edu/chimera/)
- Discovery Studio Visualizer (http://accelrys.com/products/discoverystudio/visualization-download.php)

PDBフォーマット(1)

- PDBファイルをワードパッドを用いて開く
- フォントを「MS ゴシック」にすると見やすくなる
- 冒頭部分には、生体高分子の名前や由来、文献等のデータが記載され ている

HEADER HYDROLASE(ACID PROTEINASE) 14-FEB-94 1HVR TITLE RATIONAL DESIGN OF POTENT, BIOAVAILABLE, NONPEPTIDE CYCLIC TITLE 2 UREAS AS HIV PROTEASE INHIBITORS COMPND MOL_ID: 1; COMPND 2 MOLECULE: HIV-1 PROTEASE; COMPND 3 CHAIN: A, B; COMPND 4 ENGINEERED: YES SOURCE MOL_ID: 1; SOURCE 2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS 1; SOURCE 3 ORGANISM_TAXID: 11676; SOURCE 4 EXPRESSION_SYSTEM: ESCHERICHIA COLI; SOURCE 5 EXPRESSION_SYSTEM_TAXID: 562 KEYWDS HYDROLASE(ACID PROTEINASE) EXPDTA X-RAY DIFFRACTION AUTHOR C.-H.CHANG

PDBフォーマット(2)

1	2	3	4	5 6	$\overline{\mathcal{I}}$	8	9	10	1
ATOM	1	N	PRO 2	A 1	-12.735	38.918	31.287	1.00	39.83
ATOM	2	CA	PRO 2	A 1	-12.709	39.097	29.830	1.00	39.29
ATOM	3	С	PRO 2	A 1	-13.575	38.051	29.162	1.00	39.78
ATOM	4	0	PRO 2	A 1	-14.097	37.126	29.753	1.00	38.67
ATOM	5	CB	PRO 2	A 1	-11.243	39.010	29.398	1.00	37.79
ATOM	6	CG	PRO 2	A 1	-10.636	38.128	30.469	1.00	38.69
ATOM	7	CD	PRO 2	A 1	-11.368	38.593	31.729	1.00	37.10
ATOM	8	H2	PRO 2	A 1	-13.142	39.756	31.758	0.00	15.00
ATOM	9	нЗ	PRO 2	A 1	-13.429	38.158	31.502	0.00	15.00
ATOM	10	Ν	GLN 2	A 2	-13.682	38.255	27.876	1.00	41.01

①レコード名(標準アミノ酸はATOM、非標準はHETATM)

②原子番号

③原子名(主鎖アミド窒素:N、 α 炭素:CA、 β 炭素:CBなど)

④残基名(3文字表記)

5Chain ID

⑥残基番号(配列データベース中の番号に一致させる)

⑦⑧⑨それぞれ原子のx, y, z座標 [Å]

①occupancy(その原子の重み因子、通常は1.00)

①温度因子B[Å²](X線結晶解析で決定されている場合のみ意味がある)

NCCOCCCHHN

立体構造決定法

立体構造決定法	エントリ数	割合
X線結晶構造解析	70714	87.6
核磁気共鳴(NMR)	9362	11.6
電子顕微鏡	422	0.5
その他	212	0.3
合計	80710	100.0

- ・ 全エントリ中約88%がX線結晶構造解析法により、
 立体構造が決定されている。
- 残りのほとんどは核磁気共鳴法
- X線結晶構造解析法については、次回解説

座標データに表れる違い

	X線結晶構造解析法	核磁気共鳴法
サンプルの状態	結晶(分子間接触あり)	溶液
分子量の上限	なし	200残基程度まで
水素原子	座標データに含まれない	座標データに含まれる
欠失原子	あり	通常なし
モデル数	通常1つ(部分的に複数)	複数
精度の指標	分解能 ^注	モデル構造のばらつき
原子の分布	温度因子	モデル構造のばらつき

注:X線結晶構造解析法ではどれだけ回折像を用いたかによって決まる分解能 (resolution)が全体の精度の指標。2.0~2.5 Åが普通、1.5 Å以下だと高分解能。

結晶構造の再現(1)

- 結晶中では、タンパク 質分子が規則正しく並 んでいる
- PDBに登録されている
 座標は、繰り返しの最
 小単位(非対称単位)
- 隣接したタンパク質分
 子間で相互作用していることがわかる

結晶構造の再現(2)

- メニューの「File」→
 「Fetch by ID」を選択し、
 PDB IDIこ2CI2を指定
 して「Fetch」
- 結晶構造の再現には、 「Tools」→「High-Order Structure」→ 「Unit Cell」で右図のよ うに指定する

Biological unit

- 生物学的に機能しうる 最小限の分子構成を biological unitと呼ぶ
- 分子の対称性が、結晶の対称性と偶然一致すると、非対称単位には多量体の一部しか含まれない場合がある
- RCSBのサイトでは biological unitの座標 がダウンロードできる

3PHVに登録され ている座標

Biological unitの座標

Alternative conformation

- 結晶には異なるコンフォメーションを持つ複数の構造が含まれる可能性がある
- このような場合、X線回折データ から得られる電子密度図では、 それらの構造が存在割合に応じ て複数見えることになる
- PDBファイルでは、occupancyに 1より小さい重みを与え、同じ名 前の原子を複数の座標で表す
- この時、原子名の残基名の間 (17文字目)に、コンフォメーショ ンを区別するIDを記入する

ATOM	548	Ν	AGLY	А	70
ATOM	549	Ν	BGLY	А	70
ATOM	550	CA	AGLY	А	70
ATOM	551	CA	BGLY	А	70
ATOM	552	С	AGLY	А	70
ATOM	553	С	BGLY	А	70
ATOM	554	0	AGLY	А	70
ATOM	555	0	BGLY	А	70
			▲		

28.734 14.638

Alternate location indicator

26

Occupancy

0.75 16.18

NMR構造

 ELSTC SH2ドメインと基質ペプチドの複合体の立体 構造、1HCTを開く

「Actions」→「Atoms/Bonds」→「show」 「Actions」→「Ribbon」→「hide」

「Actions」→「Atoms/Bonds」→
「backbone only」→「chain trace」

NMR構造の特徴

- 立体構造が複数のモデルの重ね合わせで表 現される
- モデル構造のばらつきを精度の指標とする – モデル構造の平均構造からのばらつき RMSD (root-mean-square deviation)

$$\mathbf{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left| \mathbf{r}_{i} - \left\langle \mathbf{r}_{i} \right\rangle \right|^{2}}$$

r_i∶原子*i*の座標 <**r**_i>∶平均構造の原子*i*の座標

構造の比較(1)

- ELSrc SH2ドメインと基質ペプチドの複合体について X線構造とNMR構造を比較する
- 1. 「File」→「Fetch by ID」で1SHDを開く
- 2. 同様に1HCTを開く
- 3. 「Favorite」→「Model Panel」を開く
- 4. 右図のようにID 1.2を左クリック したのち、「Shift」キーを押しな がらID 1.23を左クリック
- 5.「close」をクリックしてこれらを 閉じる

構造の比較(2)

- 6. 「Tools」→「Structure Comparison」→ 「MatchMaker」を選択 NatchMaker
- 7. 右図のように設定し 「OK」
- 8. ChimeraのWindowの 下部に重ね合わせに 使われた残基数(90残 基)とRMSD(0.933 Å) が表示される

Rev MatchMaker	
Reference structure:	Structure(s) to match:
1SHD (#0)	1SHD (#0)
1HCT (#1.1)	<u>1HCT (#1.1)</u>
1	
Chain pairing	
 Best-aligning pair of chains between reference and r 	natch structure
C Specific chain in reference structur with best-aligning chain i	e n match structure
C Specific chain(s) in reference struct with specific chain(s) in r	ture natch structure
Alignment algorithm: Needleman-Wun	sch 🖃 Matrix: BLOSUM-62 🛁
Gap opening penalty 12	Gap extension penalty 1
☑ Include secondary structure score (30%) Show parameters
Compute secondary structure assig	nments
Show pairwise alignment(s)	
Matching	
🔽 Iterate by pruning long atom pairs	until no pair exceeds:
2.0 an	gstroms
After superposition, compute struct	ure-based multiple sequence alignment
Save settings	Reset to defaults
	OK Apply Cancel Help

構造の比較(3)

構造の比較(4)

- NMR構造については、 各モデルのCα原子の 平均構造からのずれの 平均値(RMSD)
- X線構造では温度因子 から換算
 - $-B = 8/3\pi (\Delta r)^2$
 - $-B = 30 で \Delta r = 1.07$ Å
- 温度因子が大きい残基 は、NMRでも構造のば らつきが大きい傾向

参考:その他の立体構造データベース

- Nucleic Acid Database
 - http://ndbserver.rutgers.edu/
 - 核酸に特化した検索が可能
- PDBePISA
 - http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
 - 予測多量体構造(Biological Unit)のデータベース
- PiQSi
 - http://supfam.mrc-lmb.cam.ac.uk/elevy/piqsi/piqsi_home.cgi
 - 実験的に検証された多量体構造のデータベース
- Orientations of Proteins in Membranes (OPM) database
 - http://opm.phar.umich.edu/
 - 膜タンパク質の脂質2重膜に対する配向の予測
- ModBase
 - http://modbase.compbio.ucsf.edu/
 - 予測立体構造のデータベース

配列データベースとの連携

配列データベースへのリンク

- RCSBの検索結果のSequenceタブ

- 配列データベースからのリンク
- 配列からの検索

配列データベースからのリンク

- 1. タンパク質配列データベースUniProt (http://www.uniprot.org/)を開く
- 2. QueryにSRC_HUMANと入力し「Search」
- 3. 検索結果の下のほうに、"3D structure databases"のセクションがあり、1HCTや 1SHDが現れていることを確認すること

配列からの検索(1)

- 1. NCBI BLASTのサイトにアクセス (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
- 2. Basic Blastにある「protein blast」をクリック
- 3. 講義のページで1HCT_B.fastaをクリック
- 4. 右クリックして、「すべて選択」を選んだあと、再 び右クリックして、「コピー」
- 5. BLASTのページの「Enter accession number, gi, or FASTA sequence」のテキストエリアの 中で右クリックし、「貼り付け」

配列からの検索(2)

6. Choose Search SetのDatabaseを「Protein Data Bank proteins (pdb)」に設定

7. BLASTをクリック

	suite		
inato blastp bi	stx Iblesto Iblests		
Enter Query S	equence BLASTP program	ns search protein databases using a protein query. more	Reset page Bookmark
Enter accession	number, gl, or FASTA sequence 😧	Query subrange 😧	
>1HCT:B PDBID HDSIQAEEWYFGP LDSGGFYITSRTQ FNSLQQLVAYYSP	CHAIN SEQUENCE ITRRESENLLINALNPROIFLVRESETIKGAYCLSVSDFDNAKGLNVKHYKIRK NADGLCHRLITVCP	From To	
Or, upload file	#47 0		
Job Title	1HCT.BIPDBIDICHAINISEQUENCE		
	Enter a descriptive title for your BLAST search 😡		
Align two or	nore sequences 😨		
Choose Sear	ch Set		
Database	+ Protein Data Bank proteins(pdb)		
Organism	Enter manism name or id, completions will be successfed	. 🖅	
Optional	Enter organism common name binomial or tax id. Only 20 ton taxa will be show	an Q	
Exclude	Models (XM/XP) 🔲 Uncultured/environmental sample sequences		
Entrez Query Optional			
	Enter an Entrez query to limit search 😸		
Program Sele	ction		
Algorithm	blastp (orotein-protein BLAST)		
	PSI-BLAST (Position-Specific Iterated BLAST)		
	PHI-BLAST (Pattern Hit Initiated BLAST)		
	Choose a BLAST algorithm 🔮		

実習課題1

- 1. インフルエンザ治療薬oseltamivir(商品名: Tamiflu)と結合したneuraminidaseの立体構 造を検索しPDBファイルをダウンロードせよ
- 2. ChimeraでPDBファイルを開き、タンパク質を Ribbon表示した後、薬剤と薬剤から5 Å以内 にあるタンパク質の残基をstick表示せよ
- 3. 結合部位の拡大図をpng形式で保存せよ

実習課題2

講義のページで、kadai.fastaを表示し、この 配列をもつタンパク質の立体構造データを 検索せよ

- 2. ChimeraでPDB IDを指定して表示せよ
- 3. 全体像をpng形式で保存せよ

課題の提出

- 課題1の全体像と結合部位の拡大図を PowerPointのスライドに貼り付け、PDB IDと立 体構造決定の方法を記入せよ
- 同じPowerPointファイルの別のスライドに課題2
 の全体像を貼り付け、PDB IDとタンパク質名、
 立体構造決定の方法を記入せよ
- PowerPointファイルはメールに添付して寺田宛 (tterada@iu.a.u-tokyo.ac.jp)に送ること
- その際、件名は「構造実習」とし、本文に氏名と 学生証番号を必ず明記すること