平成23年5月25日 分子モデリングと分子シミュレーション

ポテンシャルエネルギー

東京大学大学院農学生命科学研究科 アグリバイオインフォマティクス 教育研究プログラム 寺田 透

講義予定

 5月25日(水) ポテンシャルエネルギー
 6月 1日(水) 分子動力学法と モンテカルロ法
 6月 8日(水) 分子動力学法の応用
 6月15日(水) 複合体構造モデリング

参考図書:

岡崎 進「コンピューターシミュレーションの基礎」 化学同人

本日の講義内容

- ポテンシャルエネルギーとは
- 分子軌道法実習
- 分子力学法
 - 課題1

-課題2

- ・力場パラメータの決定
- ・エネルギー最小化
- 分子力学法実習

立体構造とエネルギー

物体に力をかけて変形させると、物体の持つ
 「ポテンシャルエネルギー」が大きくなる

 ・同様に分子も変形すると、その分子が持つポ テンシャルエネルギーが変化する

分子のポテンシャルエネルギー

分子のポテンシャルエネルギーは、
 Schrödinger方程式を分子軌道法を用いて近
 似的に解くことで計算できる

- 分子軌道:分子における1電子の波動関数

- 分子軌道は、分子を構成する各原子を中心とした原子軌道の和で表される
- 原子軌道は基底関数 を用いて表される

参考: Schrödinger方程式

$$\hat{H}_{elec} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
$$\hat{H}_{elec} = -E_{elec} \Phi_{elec}$$

$$H_{elec} \Phi = E_{elec} \Phi$$

$$E = E_{elec} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}}$$

$$M: 原子数$$

$$Z_A: 原子Aの原子番号$$
分子のポテンシャルエネルギー

分子軌道法実習(1)

- 本実習では、量子化学計算ソフトウェア Gaussian 09Wを用いる
- デスクトップにあるアイコン をダブルクリックして、このソフトウェアのグラフィックユーザ ーインターフェイスGaussView 5.0を起動

Control Panel

Molecule View Window

分子軌道法実習(2)

 Control PanelのRing Fragment をクリックし、Current Fragmentが benzeneになっていることを確認し て、Molecule View Windowの中 を左クリック

- 2. Control Panelのメニューから 「Calculate」→「Gaussian Calculation Setup…」を選択
- 3. Job typeを「Energy」、MethodのBasis setを6-31G(d)に 設定し、「Submit」
- 4. インプットファイルを保存するか聞かれるので「Save」し、 デスクトップに「benzene.gjf」として保存する
- 5. Run Gaussianウィンドウが出るので「OK」

分子軌道法実習(3)

- 6. 計算が終わったらGaussian windowを閉じるか聞かれるので「はい」
- 7. Gaussian Job Completedウィンドウでは、 benzene.logファイルを選択し「OK」
- 8. Control Panelのメニューから、「Results」→ 「Summary」を選択→E(RHF)の欄に分子の ポテンシャルエネルギー^{*}が表示されている

*1 a.u. = 627.509 391 kcal/mol

用語の解説

- Method: Schrödinger方程式を解くのに用いる近似法
 - Hartree-Fock: ab initio法における基本
 - Semi-empirical: 半経験的(大規模な系を小さな計算コス)
 トで扱えるが結果の信頼性は低い)
 - DFT:密度汎関数法(電子相関の効果を比較的小さな計 算コストで取り込むことができる)
- Basis Set: 各原子におく基底関数系
 - STO-3G、3-21G、6-31G、6-311Gの順により複雑な軌道が表現できる
 - - 必要に応じてdiffuse関数(+、++)、分極関数((d)、(d,p) など)を加える

分子を変形してみよう

- Control PanelのModify Bond ジェをクリックした後、ベ ンゼンの隣り合う2つの原子をクリック
- 次のように結合長を変える

	Ť
🚯 G2:M1 - Bond Semichem SmartSlide (tm)	
Bond Type:	
○ None ○	
Displacement	
Atom 1: Translate group 💌 Atom 2: Translate group 💌	
0.770 1.75000 3.080	
Ok Cancel Help	

 同様にエネルギーを計算してみよう (ファイルはデスクトップにbenzene2.gjfとして保存)

エネルギー最小化

- 分子を変形するとエネルギーが大きくなる
- エネルギーが小さくなるように変形させること
 で、もとの構造に戻してみよう
- Job Typeを
 「Optimization」に
 設定し「Submit」
 (ファイルはデスク
 トップにbenzene3.gjf
 として保存)

· · [Method	Title	Link 0	General	Guess	NBO	PBC	Solvation	Add. Inp.	
Optimization	•									
Optimize to a	ı	Mini	imum	•	Use RFO s	tep		📃 Use G	Quadratic Ma	crostep
Calculate For	rce Constar	nts Nev	er	•	Use tight c	onvergen	ce criter	a		
dditional Key	words:									Update

分子力学法

- ・ 量子化学計算は計算コストが大きい
 電子数の4乗に比例して計算コストが増大
- 分子の変形によるエネルギーの変化を小さな計 算コストで予測できるようにしたい
- 分子の変形を、①結合長(r_b)、②結合角(θ_a)、 ③二面角(ϕ_d)、④共有結合を介さない原子間距 離(r_{ij})、の変化で表し、全体のエネルギーの変 化をそれぞれの変化からの寄与の和で表す $E_{total} = E_{bond} + E_{angle} + E_{dihedral} + E_{nonbond}$

ポテンシャルエネルギー関数

- 構造変化の成分ごとに、エネルギーの変化を 「関数」を用いて再現する
- 例えば、結合長のエネルギー関数は、分子の結合長を変化させた時のエネルギーの変化を計算し、これを再現できるように決める
- ポテンシャルエネルギー関数の例

結合長(1)

- 1. 講義のページからH2.gjfをダウンロードし、デス クトップに保存する
- スタートメニューから「すべてのプログラム」→
 「Gaussian 09W」→「Gaussian 09W」を選択し
 起動
- 3. メニューの「File」→「Open」で、H2.gjfを開く
- 4. Existing Job Editウィンドウが現れるので、この メニューから「File」→「Exit & Run」
- 5. Output File名を聞かれるので、デスクトップに H2.outとして保存する

結合長(2)

- 6. 計算が終了したらメニューから「File」→「Exit」
- GaussView 5.0を起動し、Control Panelのメ ニューの「File」→「Open」でH2.outを開く (ファイルの種類を「Gaussian Output Files (*.out *.log)」にする)
- 8. Control Panelのメニューの「Results」→ 「Scan」を開く
- 9. Scan plotウィンドウの内部を右クリックし、 Save Dataを選択し、デスクトップに H2_scan.txtとして保存

結合長(3)

- H2_scan.txtをExcelで 開き、グラフを書くと、4 次関数でよく近似でき ることがわかる
- 構造変化に伴うエネル ギー変化をあらかじめ モデル化しておくこと
 で、低い計算コストでエ ネルギーを求めること ができる

エネルギー関数の近似

参考:テイラー展開

関数f(x)のx = pのまわりでの展開 x = pからの微小な変位を Δx とおく $f(p + \Delta x) = f(p) + \frac{df(x)}{dx} \bigg|_{x=n} \Delta x + \frac{1}{2!} \frac{d^2 f(x)}{dx^2} \bigg| \quad \Delta x^2 + \frac{1}{2!} \frac{d^2 f(x)}{dx^2} \bigg|$ $+\cdots+\frac{1}{k!}\frac{d^k f(x)}{dx^k} \Delta x^k +\cdots$ $=f(p)+\frac{df(x)}{dx}\Big|_{x=n}\Delta x+\frac{1}{2!}\frac{d^2f(x)}{dx^2}\Big|_{x=n}\Delta x^2+O(\Delta x^3)$ 2次までの展開 誤差項 $(\Delta x^3 \mathcal{O} \pi - \varphi -)$

運動の比較

結合角のエネルギー関数

分子間相互作用の計算(1)

- GaussView 5.0を起動し、Control PanelのElement Fragmentをクリックして「O」を選択、Current Fragment がOxygen Tetravalentになっていることを確認して、 Molecule View Windowの中を左クリック
- 2. ややはなれた別の位置を左クリック
- 3. Control PanelのElement Fragmentをクリックして「C」を 選択、Current FragmentがCarbon Tetrahedralになっ

ていることを確認して、 Molecule View Windowの H₂Oの水素原子から1つ選 びクリック→CH₃基に置換

6. 同様にもう1つのH₂O分子の水素原子をCH₃基に置換

分子間相互作用の計算(2)

- Control Panelメニューの「Calculate」→「Gaussian Calculation Setup…」を開き、Job typeを 「Energy」、MethodのBasis setを6-31G(d)に設定 し、「Submit」 (ファイルはデスクトップにmethane2.gjfとして保存)
- 6. 同様にCH₃OH 1分子についてもエネルギーを計算 (ファイルはデスクトップにmethane1.gjfとして保存)
- 7. 以下の式を用いて相互作用エネルギーを求める

$$\Delta E = E_{\rm AB} - \left(E_{\rm A} + E_{\rm B}\right)$$

 $\Delta E = -230.0688122 - [2 \times (-115.0334869)]$

 $= -0.0018384 \text{ a.u.} = -1.15 \text{ kcal mol}^{-1}$

分子間相互作用の成分

静電相互作用エネルギー関数

- ・量子化学計算では電子密度 ρ(r)が計算される
- 電子密度 p(r)から分子のまわりの静電ポテンシャル p(r)が計算できる
- 静電ポテンシャルを再現するように原子に部分電荷をおく
- 静電相互作用を部分電荷どうしの相互作用として計算する

$$E_{ij} = \frac{q_i q_j}{\left| \mathbf{R}_i - \mathbf{R}_j \right|}$$

van der Waals相互作用

無極性分子間に働く引力(分散力)は、電子相関を考慮した高精度な量子化学計算によって初めて現れる

van der Waals引力の起源

van der Waalsエネルギー関数

二面角のエネルギー関数(1)

モデル系:ブタン

Gaussian job file: butane.gjf

二面角のエネルギー関数(2)

 ・ 周期関数の重ね合わせと1番目と4番目の原子間の van der Waals相互作用の和で表される

課題1

- ・ブタンの二面角の変化に伴うエネルギーの変化を表すポテンシャルエネルギー関数のパラメータk、n、δ、ε、σを決定せよ
 - 講義のページにあるbutane_scan.xlsxをダウン ロードして利用すること
 - 1番目と4番目の原子間距離はGauss View 5.0
 のScan Plotウィンドウのメニューの「Plot」→
 「Plot Molecular Property」を開き、「Bond」、
 「1」、「4」を指定して求めること

カ場パラメータの決定

- 力場パラメータとは?
 - ポテンシャル関数で用いられるパラメータ(平衡結合長、 ばね定数、部分電荷など)
- 非経験的パラメータ
 - 量子化学計算の結果からパラメータを求める
- 経験的パラメータ
 - 構造や熱力学量などの実験値を再現するようにパラメー タを決める

問題点と解決法(1)

- タンパク質や核酸など生体高分子は多数の原子からなる
 - 生体高分子全体について量子化学計算を行うのは困難

- 同じアミノ酸、同じヌクレオチドなど、同じ構成単位には同じ力場パラメータを使う
 - さらに、異なる構成単位の間でも、化学的に類似した環境にある原子は同じ原子種とみなし、(点電荷を除いて)同じ力場パラメータを割り当てる
 - 同じ原子種を含む小さなモデル化合物についてパラメー タを決定する

Jorgensen & Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988)

問題点と解決法(2)

- 凝縮相(液相など)では、分子が接近している ため第3の分子の位置が2つの分子の相互 作用に影響を与える
 - 気相で決めたポテンシャル エネルギー関数をそのまま 適用できない

有効ポテンシャルエネルギー

 $E(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) = E(\mathbf{r}_{1},\mathbf{r}_{2}) + E(\mathbf{r}_{1},\mathbf{r}_{3}) + E(\mathbf{r}_{2},\mathbf{r}_{3}) + \Delta E(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3})$ $= E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2) + E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_3) + E^{\text{eff}}(\mathbf{r}_2, \mathbf{r}_3)$

 $E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$: 3分子系の相互作用エネルギー $E(\mathbf{r}_1, \mathbf{r}_2)$: 2分子系の相互作用エネルギー $E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2)$: 有効2体間相互作用エネルギー

厳密な多体間相互作用の 効果を2体間相互作用の エネルギー関数に取り込む

凝縮相

このエネルギー関数のパラメータを実験値を再現するように決める

水分子のモデル(1)

	SPC	TIP3P
<i>r</i> (OH)	1.0	0.9572
∠HOH	109.47	104.52
r*	1.7766	1.7683
Е	0.1554	0.1520
q_{H}	0.41	0.417

van der Waals相互作用は 酸素原子間のみ計算する

r(OH) [Å], ∠HOH [degree] *r** [Å¹² kcal mol⁻¹], $2r^* = \sqrt[6]{2}\sigma$ ε [Å⁶ kcal mol⁻¹] $q_0 = -2q_H$

Jorgensen et al. J. Chem. Phys. 79, 926 (1983)

水分子のモデル(2)

	SPC	TIP3P	実験値
密度	0.971	0.982	0.997
蒸発熱	10.77	10.45	10.51
定圧比熱	23.4	16.8	17.99
膨張率	58	41	25.7
圧縮率	27	18	45.8

密度[g cm⁻³]、蒸発熱[kcal mol⁻¹] 定圧比熱[cal mol⁻¹ K] 膨張率[10⁻⁵ K⁻¹]、圧縮率[10⁻⁶ atm⁻¹] いずれも25°C、1 atmにおける値

Jorgensen et al. J. Chem. Phys. 79, 926 (1983)

生体高分子の力場パラメータ

- ポテンシャルエネルギー関数のパラメータ(力場パ ラメータ)は、分子シミュレーションのソフトウェアと共 に配布されている
- AMBER
 - http://www.ambermd.org/
- CHARMM
 - http://www.charmm.org/
- GROMOS, GROMACS
 - http://www.igc.ethz.ch/gromos/
 - http://www.gromacs.org/

エネルギー最小化(1)

- ・立体構造(座標)を変化させて、エネルギー関数の値が最小になるようにすること
- 立体構造最適化とも呼ばれる
- 分子動力学シミュレーションを行う際には、原
 子同士のぶつかりを排除したり、構造のゆが
 みを正すために、最初に必ず行う

エネルギー最小化(2)

- ・1次のアルゴリズム
 - Steepest descent(最急降下)法
 最も単純、収束までに多段階を要することがある
 - Conjugate gradient(共役勾配)法
 エネルギー関数がN次元の2次形式で近似できる場合、N回の操作で極小に到達する
- ・2次のアルゴリズム
 - Newton-Raphson法 収束は早いが、Hessian(∇²E)の計算に膨大な 時間がかかる

Steepest descent法

- 1. 初期構造を**r**₀とする。
- 現在の構造r_iにおける勾
 配g_i=-∇E(r_i)を計算す
 る。
- 3. 勾配方向にエネルギー が最小になる構造を求め、r_{i+1}とする。
- 4. 上記2・3をエネルギーが これ以上小さくならなくな るまで繰り返す。

Newton-Raphson法

- 以下に従って、 $\nabla E(\mathbf{r}+\Delta \mathbf{r})$ が0となる(すなわちEが極 小値をとる)変位 $\Delta \mathbf{r}$ を求める $E(\mathbf{r}+\Delta \mathbf{r}) = E(\mathbf{r}) + \nabla E(\mathbf{r}) \cdot \Delta \mathbf{r} + \frac{1}{2} \Delta \mathbf{r} \cdot \nabla^2 E(\mathbf{r}) \Delta \mathbf{r} + \cdots$ $\nabla_{\Delta \mathbf{r}} E(\mathbf{r}+\Delta \mathbf{r}) = \nabla E(\mathbf{r}) + \nabla^2 E(\mathbf{r}) \Delta \mathbf{r} + \cdots = 0$ $\Delta \mathbf{r} \approx - [\nabla^2 E(\mathbf{r})]^{-1} \nabla E(\mathbf{r})$
- エネルギーがこれ以上小さくならなくなるまで繰返す
- 収束が非常に早いので、次元が低い場合に有用

エネルギー最小化法の問題点

- ・ いずれもエネルギー関数が 極小値をとる立体構造を探 索する手法
- 生体高分子には多数のエ ネルギー極小構造が存在 するため、エネルギー最小 構造の探索は困難
- 分子動力学法、モンテカル ロ法を利用したsimulated annealing法が使われるこ とが多い

Discovery Studio 3.0 Clientの起動

Discovery Studio 3.0 Clientのアイコン
 をダブルクリックして起動

- メニューの「View」→「Explores」→
 「Tools」を選択し、Toolsタブを表示させておく
- メニューの「View」→「Toolbars」→
 「Sketching」を選択し、Sketching tool barを 表示させておく

低分子化合物の生成(1)

- メニューの「File」→「New」→「Molecule Window」を 選択し、新しいウィンドウを開く
- 2. SketchingツールバーからRing <u>M</u>を左クリック、 Molecule Windowの真ん中付近を左クリック
- ViewツールバーのRotate を左クリック
 →Sketchingモードを解除
- メニューの「View」→「Hierarchy」を選択し、Hierarchy Windowを表示
- 5. 炭素原子を1つ左クリックし選択 →黄色でマークされる
- 6. Hierarchy Windowのツリーを展開し、対応する原子 がマークされていることを確認

低分子化合物の生成(2)

- Molecule Windowの中で右クリックしてメニューを 出し、「Attributes of C5…」を選択(原子名は選択 した原子によって異なる) →HybridizationがSp3になっていることを確認
- 8. Molecule Windowの中で何もないところを左ク リックして選択を解除
- 9. 「Ctrl」キーと「A」を同時に押して全原子を選択
- 10. メニューの「Chemistry」→「Bond」→「Aromatic」 を選択

→AttributesのHybridizationがSp2になっている ことを確認せよ

低分子化合物の生成(3)

Macromolecules Simulation Receptor-Ligand Interactions Pharmacophores Small Molecules X-ray My Tools

- 11. 「Simulation」ボタンを左クリック
- 12. Toolsタブの「Change Forcefield」 を左クリックして展開する
- 13. Forcefieldを「CHARMm」、Partial Chargesを「Momany-Rone」とし、 「Apply Forcefield」を左クリック
- 14. 水素原子が付加され、Forcefield Statusが「Molecule 1 typed with CHARMm」となっていることを確認
- 15. Attributesで、部分電荷や原子種が アサインされていることを確認せよ

Forcefield

Forcefield: CHARMm ▼ Partial Charge: Momany-Rone ▼ Apply Forcefield Clear Forcefield

Forcefield Status

Molecule 1 not typed More...

Forcefield Customization

Add Residue Template

```
Modify Atom Type.
```

```
Analyze Trajectory
```

Calculate Electrostatics

参考: Molecule Windowの操作(1)

- Molecules Windowの中を左クリックしてアク ティブにしてから以下の操作を行う
- 回転

- ♥をクリックしてから3D Windowの中で左ドラッグ

• 並進

- ∲をクリックしてから3D Windowの中で左ドラッグ

・ズーム

- ☞をクリックしてから3D Windowの中で左ドラッグ

参考: Molecule Windowの操作(2)

- 選択
 - Molecule Window上で原子をクリック→その原子が選択 され、黄色い四角でマークされる
 - Molecule Window上で原子をダブルクリック→その原子 を含む残基が選択され、マークされる
 - Hierarchy Windowでもチェイン、残基、原子、グループ (backboneなど)単位で選択できる
 - 何もないところをクリックすると選択を解除できる
 - Hierarchy WindowではCtrlキーを、Molecule WindowではShiftキーを押しながらクリックすると複数選択ができる
- 属性(attribute)
 - 選択した後右クリックで表示できる

参考: Molecule Windowの操作(3)

- Home 🖾
 - 最初の向き、位置に戻す
- Fit to Screen II
 - (選択した)構造をWindowにフィットするように並進、拡大・縮小
- Center Structure
 - (選択した)構造の中心がWindowの中心に来る
 ように並進

参考:力場パラメータ

- Discovery StudioにはCHARMMが統合されている
- シミュレーションの対象に応じて力場パラメータを使い分けるのが良い
 - CHARMm: General-purpose Momany and Rone all-atom forcefield that also provides automatic parameter estimation
 - charmm22: Academic all-atom forcefield used for simulating protein systems
 - charmm27: Academic all-atom forcefield used for simulating DNA and protein systems

エネルギー最小化(1)

- メニューの「Window」→「Close All」で現在 出ているWindowを閉じる(Saveするか聞 かれるが「No」で良い)
- 2. メニューの「File」→「New」→「Molecule Window」を選択し、新しいウィンドウを開く
- Sketchingツールを使ってdibenzo-p-dioxin を作れ (原子の変更はメニューの 「Chemistry」→「Element」)

エネルギー最小化(2)

- 4. Forcefieldには「CHARMm」を用いる
- Toolsタブの「Run Simulation」のツリーを展 開し「Minimization」をクリック
 →設定ウィンドウが現れる
- 6. 右下のように設定して「Run」

7. メニューの「View」 →「Data Table」で エネルギー値を確 認せよ

Min	imization					
[],	avamatar Nama	Developmentary Vielue				
	arameter Name	Parameter value				
	Input Typed Molecule	Molecule:Molecule 2				
	Minimization					
1	Implicit Solvent Model	None				
t	Nonbond List Radius	14.0				
1	Electrostatics	Spherical Cutoff				
I.	Advanced					
	Show Help					
	Show Help Run Options Cancel Help					

SMILESによる 化合物の 表現

- 低分子化合物の構造の表現方法の1つの SMILESがある
- 新しいMolecule Windowを開き、メニューの 「File」→「Insert From」→「SMILES」を選択
- Smiles stringに入力すると対応する分子が 生成される(aromaticは小文字)
 - benzene: c1ccccc1
 - dibenzo-p-dioxin: c13ccccc1Oc2cccc2O3
 - alanine: [N+][C@@H](C)C(=O)[O-]

http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

課題2

- Force fieldはCHARMmとすること
- エネルギー最小化後の構造の図をPNG形式
 で保存すること

課題の提出

- 課題1については、作成したExcelファイル、
 課題2については、エネルギー最小化後の構造の図のファイルを添付してメールで寺田宛
 (tterada@iu.a.u-tokyo.ac.jp)に送ること
- 課題2については、エネルギー最小化前と後のエネルギー値を本文に記載すること
- 件名は「分子モデリング課題」とし、本文に氏名と学生証番号を必ず明記すること