平成23年6月8日 分子モデリングと分子シミュレーション

分子動力学法の応用

東京大学大学院農学生命科学研究科 アグリバイオインフォマティクス 教育研究プログラム 寺田 透

本日の講義内容

- ・ペプチドのエネルギー最小化
- ・水溶液環境のモデル化
- ペプチドの分子動力学シミュレーション
 課題1
- ・シミュレーションの高速化
- タンパク質の分子動力学シミュレーション - 課題2
- ・応用事例の紹介

ペプチドの生成

- 1. Discovery Studio 3.0 Clientを起動し、新しいMolecule Windowを開く
- 2. 「Macromolecules」ボタンを左クリック
- 3. 「Build and Edit Protein」を展開
- 4. Build Actionを「Create/Grow Chain」とする
- 5. Conformationを「Right-hand Alpha Helix」 とする
- 6. Choose Amino Acidで「Ala」を9回クリック してalanine 9-merペプチドを作成せよ

水素結合距離の測定

- 主鎖のアミド基の窒素原子 とカルボニル基の酸素原子 間で形成されている水素結 合ペアについて以下に従っ て距離を測定しておく
- 原子間距離を測りたい原 子のペアをShiftキーを押 しながら左クリックで選択 する
- Measureボタン▲を左ク リックすると原子のペア が緑色の線で結ばれ、距 離がÅ単位で表示される

α helixではi番目のカルボニル 酸素とi+4番目のアミド窒素が 水素結合を形成する

Branden & Tooze「タンパク質の構造入門」第2版より引用

ペプチドのエネルギー最小化

- 1. デスクトップに「ala9.dsv」として保存
- 2. 「Simulation」ボタンを左クリック
- 3. 「Change ForceField」を展開し、Forcefieldに 「charmm27」を指定
- 4. 「Apply Forcefield」を左クリック
- 5. 「Run Simulations」を展開し、Toolsにある 「Minimization」を左クリックし「Run」
- 6. Jobが完了したら、Data Tableでエネルギーと 水素結合距離を確認

エネルギー最小化の結果

初期構造のエネルギー 268.307 kcal mol⁻¹

最小化後のエネルギー 141.347 kcal mol⁻¹

エネルギー最小化後に水素結合が壊れていることに注意

水溶液環境のモデル化(1)

- Alanineペプチドは水溶液中でα helix構造を
 安定にとりうると考えられている
- 今回のエネルギー最小化計算は真空中で行われており、水分子による溶媒効果は考慮されていない
- 生体分子のシミュレーションにおいては、水
 溶液環境を適切なモデルを用いて再現する
 必要がある

水溶液環境のモデル化(2)

- ・現在以下の方法がよく用いられている
- ・水分子を陽に配置
 - 球状に配置
 - 直方体状に配置→周期境界条件
- 溶媒和自由エネルギーを近似的に求める
 - 非極性項→溶媒接触表面積に比例
 - 極性項→連続誘電体モデル
 - Poisson-Boltzmann方程式
 - Generalized Bornモデル

球状の配置

$$r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$$

$$E_{\text{Cap}} = \begin{cases} 0 & r < r_{\text{Cap}} \\ k(r - r_{\text{Cap}})^2 & r \ge r_{\text{Cap}} \end{cases}$$

- 分子が系の中心 (x₀, y₀, z₀) から半径r_{Cap}の外側に
 出て行こうとすると系の中心に向けて束縛力が働く
- 水分子を生体高分子の周りに球状に配置すること
 を"Cap"と呼ぶことがある

周期境界条件

- 中央のセルと同じもの
 が無限に繰り返す
- セルから出て行った分
 子は、そのセルの反対
 側から入る

水溶液環境のモデル化(3)

- 水分子を球状に配置
 - 系の外側は真空であるので、水が蒸発していか ないように束縛する必要がある
 - 系の表面に位置する水分子はバルクの水とは異なる環境に置かれる
- 周期境界条件
 - どの分子も同じ環境
 - –系の分子が周期性を感じないように、系を十分に 大きくする必要がある

溶媒和自由エネルギーの近似(1)

・ 以下のような熱力学過程を考える

電荷0の溶質を溶 媒に溶かす △G_{np} 電荷を移動する ∆G_{pol}

• 溶媒和自由エネルギー $\Delta G_{solv} = \Delta G_{no} + \Delta G_{ool}$

溶媒和自由エネルギーの近似(2)

- ・非極性項(ΔG_{np})は、炭化水素の溶媒和自由 エネルギーの実験データから、溶媒接触表面 積(solvent-accessible surface area, SASA)に比例すると近似できる $\Delta G_{np} = \sigma A + b A$: SASA、 σ , b: 経験的パラメータ
- 極性項は、溶媒を連続誘電体とみなして、電磁気学の理論を用いて求める

$$\Delta G_{\text{pol}} = \frac{1}{2} \int [\phi(\mathbf{r}) - \phi_{\text{vac}}(\mathbf{r})] \rho(\mathbf{r}) d\mathbf{r}$$

静電ポテンシャル 溶質の電荷分布

誘電体

╋

コンデンサーに比誘電率*ε*の誘電体 を挿入すると、誘電体の表面に電荷 が現れ、極板間の電場を打ち消す →静電ポテンシャルは1/*ε*となる

水溶液中では水分子が配向して誘電体として働き、静電 相互作用を弱める

連続誘電体モデル

- 分子表面にプローブ球(水の場合半径1.4 Å)を転 がした時、球の中心が作る軌跡→溶媒接触表面 (solvent-accessible surface, SAS)
- SASからプローブ球の半径分内側の点がつくる表面→分子表面(molecular surface, MS)

• MSの内側を低誘電率(ε = 1~4)、外側を溶媒の誘 電率(水の場合 ε = 80)の誘電体とみなす

Leach, A.R. "Molecular modeling – principles and applications" 2nd Ed. Pearson, England

Poisson-Boltzmann方程式

- 連続誘電体モデルにおいて、静電ポテンシャルを与える
- 塩がない場合→Poisson方程式 $\nabla \cdot [\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})] = -4\pi \rho(\mathbf{r})$

静電ポテンシャル 溶質の電荷分布

・ 塩が存在する場合→塩の電荷分布は Boltzmann分布に従う $\nabla \cdot [\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})] = -4\pi [\rho(\mathbf{r}) + \rho_{ion}(\mathbf{r})]$

塩の電荷分布

Generalized Bornモデル(1)

- Poisson-Boltzmann方程式は数値的にしか解けないので、ポテンシャルエネルギーの勾配(すなわち力)が必要な分子動力学シミュレーションでは使いにくい
- 空間を細かいグリッドに切って計算するため、計算 コストが非常に大きい
- Generalized BornモデルはPoisson-Boltzmann方 程式の近似解を低い計算コストで与えることができ るため最近良く用いられている
- 力を解析的に求めることが可能

参考文献: Bashford & Case (2000) Annu. Rev. Phys. Chem. 51, 129.

Generalized Bornモデル(2)

・イオンの溶媒和自由エネルギー(Bornの式)

q: イオンの電荷、a: イオン半径、&:溶媒の比誘電率

• 一般の分子に拡張

$$\Delta G_{\text{pol}} = -\frac{1}{2} \left(1 - \frac{1}{\varepsilon} \right) \sum_{i,j=1}^{N} \frac{q_i q_j}{f_{\text{GB}}} \quad \begin{array}{c} R_i : \ B \neq i \text{ on f } \beta \text{ Born } \# \& \\ & & & & & \\ R_i : \ B \neq i \text{ on f } \beta \text{ Born } \# \& \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

非極性項のモデル

- 横軸に溶媒接触表面積、縦軸 にモル溶解度の対数をプロット*
- ・ モル溶解度sと自由エネルギー $\mu_{w}^{\circ} - \mu_{o}^{\circ} = -RT \ln s$

 μ_{w}° :水溶液中での標準化学ポテンシャル

 μ_{0}° :炭化水素の標準化学ポテンシャル

- 現在では比例定数σに
 5 cal mol⁻¹ Å⁻²が使われる**
- この項に極性項を合わせて GB/SA(PB/SA)モデルと呼ば れる

*Hermann *J. Phys. Chem.* **76**, 2754 (1972). **Sitkoff *et al. J. Phys. Chem.* **98**, 1978 (1994).

Figure 2. Relationship of cavity surface area to solubility for alkanes and cycloalkanes.

Figure 3. Relationship of cavity surface area to solubility for alkylbenzenes.

Discovery Studioでの操作(1)

• 水分子を配置する場合

- 1. Molecule Windowに計算対象の分子を表示する
- 2. 「Simulation」ボタンを左クリックし、「Run Simulations」 を展開し、Advancedにある「Solvation」を左クリック
- 3. Solvation Modelに「Explicit Periodic Boundary」もしく は「Explicit Spherical Boundary with Harmonic Restraint」を選び「Run」
- Generalized Bornモデルを使用する場合
 - エネルギー最小化計算等で、Implicit Solvent Modelに 「Generalized Born with a simple SWitching (GBSW)」を指定する

ペプチドのMDシミュレーション(1)

- 1. 保存しておいた「ala9.dsv」を開く
- 2. ペプチドの周りに球状に水分子を配置する
- 3. 新しいMolecule Windowが開くので、もう一度Force fieldをcharmm27に設定する
- 4. 「Run Simulations」のDynamicsにある「Standard Dynamics Cascade」を左クリックする
- 5. Electrostaticsを「Spherical Cutoff」に設定し「Run」
 - 最急降下法によるエネルギー最小化(Minimization)、共役 勾配法によるエネルギー最小化(Minimization2)、加熱 (Heating)、平衡化(Equilibration)、プロダクションラン (Production)の順に実行される
 - エラーになる場合はForce fieldをクリアしてcharmm22に変 更した後、もう一度クリアしてcharmm27に再設定すること

ペプチドのMDシミュレーション(2)

- 計算が終わったら(計算には15分程度かかる)、
 新しいMolecule Windowに結果が表示される
- 7. メニューの「View」→「Toolbars」→「Animation」を 選択→Animation Toolbarが表示される
- 8. 「Start Animation」ボタン ▶ でAnimationを再生
- 9. 「Analyze Trajectory」を展開し、Analyzeにある 「Analyze Trajectory」を左クリックし、「Run」
- 10. Data TableのConformationタブにプロダクション ランにおける水素結合距離が表示される

課題1

- Alanine 9-merの水溶液中のMDシミュレーションについて、プロダクションランにおける水素結合長の変化をExcelでプロットせよ
 - TimeとDistanceのカラムをCtrlキーを押しながら選 択してコピーし、Excellに貼り付け
 - どの系列がどの原子間の距離か明示すること
- Generalized Bornモデル(GBSW)を用いて同様の計算を行い、水素結合長の変化をプロット せよ
- これらのプロットから何が言えるか考察せよ

水素結合距離の時間変化

- 末端を除いて水素結合が概ね維持されている
- Generalized Bornでは距離の変動が大きい

参考: 膜環境のモデル化(1)

- ・タンパク質を脂質2重膜に埋め込む
- ・膜の両側に水分子を配置

de Groot & Grubmuller, Science 294, 2353 (2001)

参考: 膜環境のモデル化(2)

- Orientations of Proteins in Membranes (OPM) database
 - URL: http://opm.phar.umich.edu/
 - 膜タンパク質が膜に どのような向き・位置 で埋め込まれているか 予測しデータベース化 している

計算時間の例

- 対象:球状に配置した水分子(TIP3Pモデル)
- Amber 8のSanderモジュール使用
- 計算にはIntel Xeon Processor 2.8 GHzを備えたPCを使用
- 時間刻み∆tは0.5 fs
- 1 psの計算にかかる時間(単位は秒)を計測

原子数	計算時間	比率	非共有結合相互 作用の計算時間	割合
3087	912	1.0	911	0.9983
6066	3955	4.3	3951	0.9992
10608	16918*	18.5	16911	0.9996

*4.7時間 1 nsのシミュレーションに196日かかる

タンパク質:1123原子、水分子:3363分子 合計:11212原子

分子運動の時間スケール(1)

永山國昭「生命と物質 生物物理学入門」より引用

分子運動の時間スケール(2)

- ・現状の計算機の能力では、何らかの工夫をしなければ、生物学的に意味のある時間スケール(~10 ns以上)のシミュレーションはできない
- 分子動力学法になんらかの近似を導入して、
 効率化を図る必要がある

分子シミュレーションの効率化

- ・時間刻み∆tを長くする
 –SHAKE/RATTLE法
 - 多重時間積分法
- ・非共有結合相互作用の計算の近似

- 多重極子展開法

・本講義では赤枠の3つの方法について解説

時間刻みの選択

- 一般的に、最も早い運動の周期の10分の1から20
 分の1程度の時間刻みが用いられる
- 最も速い運動は、X-H伸縮運動(X=C、N、O、S)
 で、3000 cm⁻¹程度(周期は約10 fs)
- ・ 時間刻み∆tには0.5~1.0 fsを用いる
- X-H伸縮運動の次に速い運動はX-X伸縮運動で 1500 cm⁻¹程度
- 従って、X-H伸縮運動を除くことができれば時間刻 みは2倍にできる
- X-H結合長を固定→SHAKE/RATTLE法

SHAKE/RATTLE法(1)

簡単のために2原子分子を考える
束縛力をかけて2原子間の距離を
𝑘¹, 𝑘¹, 𝑘¹, 𝑘¹
𝑘², 𝑘²

- 1. 2原子間に働く束縛力を未定係数 λ を用いて表し、velocity Velret法に従って、時刻 $t+\Delta t$ における座標を計算する $\begin{cases} \mathbf{v}_{1}' = \mathbf{v}_{1}(t) + [\mathbf{f}_{1}(\mathbf{r}(t)) + \lambda \mathbf{r}_{12}(t)] \frac{\Delta t}{2m_{1}} \\ \mathbf{r}_{1}(t+\Delta t) = \mathbf{r}_{1}(t) + \mathbf{v}_{1}'\Delta t \end{cases} \begin{cases} \mathbf{v}_{2}' = \mathbf{v}_{2}(t) + [\mathbf{f}_{2}(\mathbf{r}(t)) - \lambda \mathbf{r}_{12}(t)] \frac{\Delta t}{2m_{2}} \\ \mathbf{r}_{2}(t+\Delta t) = \mathbf{r}_{2}(t) + \mathbf{v}_{2}'\Delta t \end{cases}$
- 以下の2次方程式を解き、2原子間の距離がdになるように 未定係数λを求め、1の式に代入する→SHAKE

 $d^{2} = \left|\mathbf{r}_{1}(t + \Delta t) - \mathbf{r}_{2}(t + \Delta t)\right|^{2}$

SHAKE/RATTLE法(2)

- 3. 新しい座標を用いて力**f**(**r**(*t*+∆*t*))を計算する
- 2原子間に働く束縛力を未定係数λを用いて表し、時刻t+∆t における運動量を計算する

$$\begin{cases} \mathbf{v}_{1}(t+\Delta t) = \mathbf{v}_{1} + \left[\mathbf{f}_{1}(\mathbf{r}(t+\Delta t)) + \lambda \mathbf{r}_{12}(t+\Delta t)\right] \frac{\Delta t}{2m_{1}} \\ \mathbf{v}_{2}(t+\Delta t) = \mathbf{v}_{2} + \left[\mathbf{f}_{2}(\mathbf{r}(t+\Delta t)) - \lambda \mathbf{r}_{12}(t+\Delta t)\right] \frac{\Delta t}{2m_{2}} \end{cases}$$

$$\frac{d}{dt} \left| \mathbf{r}_1(t + \Delta t) - \mathbf{r}_2(t + \Delta t) \right|^2 = 2(\mathbf{r}_1(t + \Delta t) - \mathbf{r}_2(t + \Delta t)) \cdot (\dot{\mathbf{r}}_1(t + \Delta t) - \dot{\mathbf{r}}_2(t + \Delta t))$$
$$= 2(\mathbf{r}_1(t + \Delta t) - \mathbf{r}_2(t + \Delta t)) \cdot (\mathbf{v}_1(t + \Delta t) - \mathbf{v}_2(t + \Delta t)) = 0$$

SHAKE/RATTLE法(3)

水分子の例(TIP3P) $d_{12} = |\mathbf{r}_1 - \mathbf{r}_2| = 0.9572$ Å $d_{23} = |\mathbf{r}_2 - \mathbf{r}_3| = 1.5136$ Å $d_{31} = |\mathbf{r}_3 - \mathbf{r}_1| = 0.9572$ Å

- このような場合は、連立2次方程式が現れるので解析的に 解けない→誤差が一定値(たとえば10⁻⁶Å)以下になるまで 繰り返し計算により求める
- TIP3Pモデルは剛体を前提に力場パラメータが決められているので必ずSHAKE/RATTLEを使う

Discovery Studioでの操作(2)

- ・標準ではSHAKEは使用されない
- SHAKEを利用する場合は、Standard Dynamics Cascade、Dynamics (Production)などのパラメータのうち、

Advancedの左の ▷ をクリックして 展開し、右のよう に設定する

candard Dynamics Cascade		
Parameter Name	Parameter Value	*
Nonbond List Radius	14.0	
Electrostatics	Spherical Cutoff	
 Advanced 		
Dynamics Integrator	Leapfrog Verlet	
Apply SHAKE Constraint	True	Ξ
Random Number Seed	314159	
Number of Processors	1	-
Show Help Run Options Cancel	Help	
SHAKEの適用例

Methanolの分子動力学シミュレーション(温度制御なし)に おける全エネルギーの誤差(初期値との差)の推移

SHAKEの適用例

SHAKEを用いると時間刻み2 fsでもSHAKEなしの0.5 fs に匹敵する精度が得られる

非共有結合相互作用の扱い

- ・非共有結合相互作用は、原子のペアについて計算する必要がある
 →N原子系ではN(N-1)/2のペア
- 非共有結合相互作用は距離が離れるほど弱 くなる(van der Waals引力はr⁶に比例、静電 相互作用はr¹に比例)
- ・離れている原子同士は相互作用しないとみ なす→カットオフ法

カットオフ法

- 原子iから半径r_cの範囲
 内にある原子との非共
 有結合相互作用の計
 算を行う
- この範囲にある原子の
 平均個数をMとすると、
 非共有結合相互作用
 の計算量はN(N-1)/2
 からNMに減少する

ペアリストの作成

- カットオフ半径r_c以内にある 原子ペアのリストを作成す る必要がある
- この計算量はN(N−1)/2
- カットオフ半径r_cより外側の 半径r_lの範囲でリストを作っ ておき、原子の最大移動度 がr_l-r_cを超えた時にリストを 更新するようにすると計算 量を削減できる

周期境界条件の場合(1)

周期境界条件では基本セルのコピーが無限に続くので全ての原子ペアについて相互作用を近似せずに直接計算することは不可能

カットオフを用いる必要 がある

Minimum image convention

Minimum image convention

カットオフ法の問題点

- Van der Waals相互作用は遠距離 では、r⁶の項が支配的 →5 Åの距離にある原子に比べ て、10 Åの距離にある原子は相互 作用が1/2⁶ = 1/64 → van der Waals相互作用はカッ トオフ法で十分な精度で計算可能
- 原子がカットオフ半径の範囲から 出入りする際にエネルギーが変動 するため、全エネルギーは保存し ない

カットオフしない計算法

- ・遠距離まで相互作用が及ぶ静電相互作用 は、カットオフせずに計算する必要がある
- ・遠距離の相互作用を多重極子で近似する
 - Cell multipole法 Fast multipole法 Fast multipole法
- ・周期境界条件において、イメージセルからの 寄与を近似的に取り込む
 - Ewald法
 - Particle Mesh Ewald法

周期境界条件の場合(2)

中央の基本セル内の原子 同士だけでなく、基本セル 内の原子と周囲のイメー ジセル内の原子との間の 相互作用も計算したい

原子*i*の位置**r**_iにおける 静電ポテンシャル:

 $\varphi(\mathbf{r}_i) = \sum_{\mathbf{n}} \sum_{j} \frac{q_j}{\left|\mathbf{r}_i - \mathbf{r}_j + L\mathbf{n}\right|}$

n = 0の時は*i* = *j*となるペアは計算しない

Particle Mesh Ewald法(1)

・ 点電荷を以下の2つの電荷分布に分ける

Particle Mesh Ewald法(2)

- 静電ポテンシャルもそれぞれの電荷分布由 来の和で書ける $\varphi(\mathbf{r}) = \varphi_1(\mathbf{r}) + \varphi_2(\mathbf{r})$ $\varphi_1: 残りの電荷分布由来$ $<math>\varphi_2: ガウス分布に従う電荷分布由来$ 静電相互作用エネルギーは以下の通り $E = E_{\rm dir} + E_{\rm rec} + E_{\rm self}$ $E_{\text{dir}} = \frac{1}{2} \sum_{i} q_i \varphi_1(\mathbf{r}_i), \quad E_{\text{rec}} = \frac{1}{2} \sum_{i} q_i \varphi_2(\mathbf{r}_i)$
 - $E_{\text{self}} = -\frac{1}{\sqrt{2\pi\sigma^2}} \sum_{i} q_i^2$ 同じ原子によるガウス分布に従う電荷 分布同士の相互作用を差し引く

Particle Mesh Ewald法(4)

- Poisson方程式(ε =1) $\nabla^2 \varphi(\mathbf{r}) = -4\pi \rho(\mathbf{r})$
- ・周期境界条件下では、電荷分布が十分に滑らかであれば、離散フーリエ変換を用いて解く
 くことができる

Particle Mesh Ewald法(5)

・エネルギー E_{rec} は以下で計算できる $E_{rec} = \frac{1}{2} \sum_{i} q_i \varphi_2(\mathbf{r}_i) = \frac{h^3}{2} \sum_{m} \rho'(\mathbf{r}_m) \varphi'(\mathbf{r}_m)$ hはグリッドの幅で、 \mathbf{r}_m ばグリッドの点である また、 ρ' は以下を満たし、 φ' は ρ' による静電ポ テンシャルである

$$\rho'(\mathbf{r}) = \rho^{\sigma/\sqrt{2}}(\mathbf{r}) = \sum_{i} q_{i} \left(\frac{1}{\pi\sigma^{2}}\right)^{\frac{3}{2}} \exp\left(-\frac{|\mathbf{r}-\mathbf{r}_{i}|^{2}}{\sigma^{2}}\right)$$

参考文献: Shan et al. (2005) J. Chem. Phys. **122**, 054101.

Particle Mesh Ewald法(6)

・以上をまとめると以下のようになる

- ガウス分布に従う電荷分布による静電ポテンシャルは、離散Fourier変換を用いて計算する
- 全電荷は0でなければならない
- 残りの電荷分布による静電相互作用はパラメー タのを調整し、この項が小さいカットオフ半径で十 分減衰するようにし、minimum image conventionに従って計算する
- ・離散Fourier変換に高速フーリエ変換を用いることで、原子数Nの系でNlogNに比例する

 計算量に削減できる

参考:Fourier変換

周期Lの関数のFourier変換	
$f(x) = \sum_{n=-\infty}^{\infty} \widetilde{f}(n) \exp\left(\frac{2\pi i n x}{L}\right)$	Fourier変換
$\widetilde{f}(n) = \frac{1}{L} \int_{0}^{L} f(x) \exp\left(-\frac{2\pi i n x}{L}\right) dx$	Fourier逆変換
$f \otimes g(x) = \frac{1}{L} \int_{0}^{L} f(x - y)g(y)dy$	畳み込み
$\frac{1}{L}\int_{0}^{L} f \otimes g(x) \exp\left(-\frac{2\pi i n x}{L}\right) dx = \widetilde{f}(n)\widetilde{g}(n)$	畳み込みの Fourier変換

参考:式の証明

- 電子密度 ρ の作る静電ポテンシャル φ は以下の ように書くことができる $\varphi(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} = \rho \otimes \gamma, \quad \gamma(\mathbf{r}) = \frac{1}{|\mathbf{r}|}$
- これを用いるとE_{rec}は以下のように書ける $E_{rec} = \frac{1}{2} \rho \cdot \varphi_{2} = \frac{1}{2} \rho \cdot \left(\rho \otimes G^{\sigma} \otimes \gamma \right)$ $= \frac{1}{2} \rho \cdot \left(\rho \otimes G^{\sigma/\sqrt{2}} \otimes G^{\sigma/\sqrt{2}} \otimes \gamma \right)$ $= \frac{1}{2} \left(\rho \otimes G^{\sigma/\sqrt{2}} \otimes G^{\sigma/\sqrt{2}} \otimes \gamma \right)$ $A \cdot (B \otimes C) = (A \otimes B) \cdot C$ $= \frac{1}{2} \left(\rho \otimes G^{\sigma/\sqrt{2}} \otimes C^{\sigma/\sqrt{2}} \otimes \gamma \right)$

実際の計算時間

- 水分子の系で計算時 間を計測
- 「近似なし」では原子数
 Nの2乗に比例
- PMEを使用することで ほぼNlogNに比例
- SHAKEを併用すること で時間刻みを4倍(2 fs) にでき、計算速度は3.7 倍程度高速化した

計算の並列化

- 分子動力学シミュレーションで用いるソフトウェアは、並列計算を前提としてプログラムされている
- PCを高速ネットワークで 接続したPCクラスタを用 いると、安価なシステムで 比較的高速なシミュレー ションが可能

Discovery Studioでの操作(3)

- 標準では静電相互作
 用の計算にはカットオ
 フ法が用いられる
- カットオフによるエネル ギーの不安定性を緩和 するため、スイッチング 関数が用いられている

Minimization		r(ペアリスト 作成田)
Parameter Name	Parameter Value	
Minimization		
Implicit Solvent Model	None	
 Nonbond List Radius 	14.0	' off
Nonbond Higher Cutoff Distance	12.0	
Nonbond Lower Cutoff Distance	10.0	← fan
Electrostatics	Spherical Cutoff	- ON
Advanced		
Show Help		
Run Options V Cancel	Help	

Discovery Studioでの操作(4)

- Electrostaticsに「Particle Mesh Ewald」を選ぶとこの方法を用いて静電相互作用の計算が行われる
- van der Waals相互作用はカットオフ法で計算される
- ・ パラメータ σ はKappa($\kappa = 1/\sqrt{2\sigma}$)で与えられ、 $3/r_{off}$ と $6/r_{off}$ の間に設定する
- 系が電気的に中性でない場合は、SolvationでAdd Counterionを「True」とし、counterionを配置して中性

Parameter Name	Parameter Value	
Implicit Solvent Model	None	
 Nonbond List Radius 	14.0	
Nonbond Higher Cutoff Distance	2 12.0	
Nonbond Lower Cutoff Distance	10.0	
 Electrostatics 	Particle Mesh Ewald	
Карра	0.34	
Order	4	

にする

タンパク質のMDシミュレーション(1)

- 1. PDB ID 1CRNの構造を開く
- 2. Force fieldにcharmm27を指定(水素が付加される)
- 3. Implicit Solvent ModelにGBSWを指定して エネルギー最小化を行う
- 4. タンパク質の周りに周期境界条件の下で、 直方体状に水分子を配置する
- 5. もう一度Force fieldをcharmm27に設定

タンパク質のMDシミュレーション(2)

- 6. 「Standard Dynamics Cascade」で右の通り 指定し「Run」
 - 30分ほどかかる
 - ステップ数: 2500
 - 時間刻み: 2 fs
 - 定温·定圧
 - Particle Mesh Ewald
 - SHAKE

Parameter Name	Parameter Value	1
Equilibration		
Production		
Steps	2500	
Time Step	0.002	[
Target Temperature	300.0	
Temperature Coupling Dec	c… 5.0	
Save Results Frequency	50	
Save Restart File	True	
Constraints		
Туре	NPT	
TMass	1000.0	
Implicit Solvent Model	None	
A Nonbond List Radius	9	:
Nonbond Higher Cutoff Dis	st… 8	
Nonbond Lower Cutoff Dis	:t-·· 7.5	
 Electrostatics 	Particle Mesh Ewald	
Карра	0.5	
Order	4	
 Advanced 		
Dynamics Integrator	Leapfrog Verlet	
Apply SHAKE Constraint	True	
Random Number Seed	314159	
Number of Processors	1	

課題2

- 1CRNの結晶構造を観察し、水素結合を2つ
 以上見つけよ
- 1CRNのMDシミュレーションのトラジェクトリ から、この水素結合の距離を計算し、時間を 横軸としてプロットせよ(どの残基のどの原子 間か明示すること)
- このプロットから何が言えるか考察せよ

応用事例の紹介

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 284, NO. 44, pp. 30230–30239, October 30, 2009 © 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

A Non-canonical DNA Structure Enables Homologous Recombination in Various Genetic Systems*^S

Received for publication, July 13, 2009, and in revised form, August 28, 2009 Published, JBC Papers in Press, September 3, 2009, DOI 10.1074/jbc.M109.043810

Tokiha Masuda^{‡§}, Yutaka Ito[¶], Tohru Terada^{||}**, Takehiko Shibata^{‡§}, and Tsutomu Mikawa^{‡§‡‡1}

From the [‡]Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, the [§]RIKEN Advanced Science Institute and the **RIKEN Computational Science Research Program, 2-1 Hirosawa, Wako, Saitama 351-0198, the [¶]Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, the [¶]Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, and the ^{‡‡}RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan

Masuda et al. J. Biol. Chem. 284, 30230 (2009).

RecAによるDNAの相同組換え

- RecAは大腸菌で、DNAの相 ullet同組換えを担うタンパク質
- 1本鎖DNAはRecAに結合す ۲ ると、伸張した特異な立体構 浩をとる
- 本論文では、他の生物に存在 • する、別の相同組換えタンパク質に結合したDNAも同様な 立体構造をとることを示した
- ・ タンパク質同士に進化的な類 縁関係はないことから、この 構造をとることが、相同組換えに重要であると考えられる

組換えタンパク質に結合したDNAの構造

B-form DNA

hsRad51-bound ssDNA

ecRecT-bound ssDNA

ttRecO-bound ssDNA

Mhr1-bound ssDNA

RecA•DNA複合体構造

- では、この構造をとると なぜ相同組換えに有利 なのか?
- RecA·DNA複合体の結 晶構造を基に、分子動 力学シミュレーションを 用いてDNAの運動性を 解析した

シミュレーションの手順

- 1. 初期構造の作成
 - 立体構造の取得
 - 欠失残基への対応
 - 水素原子付加
 - リガンドのモデリング
 - 力場パラメータの取得
 - 水分子の配置

- 2. 立体構造最適化
- 3. 初期速度の割り当て
- 4. 平衡化
 - 座標の束縛
 - 水分子配置の最適化
- 5. プロダクションラン

初期構造の作成(1)

- 立体構造の取得
 - PDBのサイト(http://www.rcsb.org/pdb/)からダウンロード
 - 非対称単位に2つの複合体が含まれているが、一方だけで機能していることは明らか→一方の複合体のみを選択
- 欠失残基への対応
 - 結晶構造に含まれる欠失残基はモデリングなどで補う必要がある
 - ここでは、欠失残基は人為的に付加されたリンカ配列であるので、欠失残基の前後の残基をacetyl基、N-methyl基でブロック
- 水素原子付加
 - 基本的に自動的に付加できる
 - SS結合の有無、Hisのプロトン化状態に注意

Hisのプロトン化状態

δ位にプロトン化 ε位にプロトン化 δ, ε位にプロトン化

- ・ His側鎖のpKaは中性付近であるため2つの窒素原子とも水素原子が結合した状態も十分にとりうる
- 基本的には、His周りの水素結合ネットワークからプロトン化状態を決定する

初期構造の作成(2)

- リガンドのモデリング
 - RecAにはATPが結合するが、ここでは反応中間体アナ ログADP・AIF₃が結合している
 - アナログを本来のATPに戻すモデリングを行う
- 力場パラメータの取得
 - リガンドの力場パラメータは分子動力学ソフトウェアに含まれていないので、自分で作成するか、Amber
 Parameter Database*等から取得する
- 水分子の配置
 - PMEを利用して高精度かつ高速にシミュレーションを行う ため水分子を直方体状に配置する
 - 電荷を中性にするためにカウンターイオンを配置する

*http://www.pharmacy.manchester.ac.uk/bryce/amber

平衡化

- 初期構造では、配置した水分子とタンパク質の間に隙間がある
- ・ 定温定圧シミュレーショ ンを行い、水分子の配 置を最適化する
- その際、タンパク質の 原子が初期位置からあ まり動かないように束 縛する

結果の解析

- DNAのbackboneに対し てbaseのRMSDは大き く、baseの構造が大きく 揺らいでいることが明ら かとなった
- これは、RecAに結合した DNAが伸長した構造をと ることにより、base間の 相互作用が弱くなること による
- この運動性が相同性探 索に有利に働く可能性が ある

課題の提出

- 課題1、課題2の結果のエクセルファイルを添付して、寺田宛tterada@iu.a.u-tokyo.ac.jpに送ること
- ・課題1、課題2の考察はメールの本文に記載 すること
- その際件名は「分子モデリング課題」とし、本 文に氏名と学生証番号を明記すること