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Classical mechanics

* Newton’s equation of motion
FE-ma F:force, m: mass, a: acceleration
3D vectors are denoted by bold-face

symbols.
Scalar values are denoted by italic symbols.

* a is second-derivative of position r with
respect to time t.
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Solution of equation of motion (1)

 Fall of a body of mass m from height h

— v=20 dt”
v,(t)=—gt+C, v,(0)=0 — C=0

F=-mg

d’z d’z dv,
m—=-mg —» ——=—2L=
dt dt

_g’

2 _y)=—gt - z(t)=—%gt2+D
2(00)=h — D=h
z(t):—%gt%h

Two initial conditions are required to solve
second order differential equations. 4



Solution of equation of motion (2)

* Harmonic oscillator M
Mags: m « S
Spring length: r r
Length of unstrained spring: r,
Force constant: k
F=—k(r-r,) F =—kg
d 2r — > d Zq
mF:—k(r—ro) q=r-I mF=—kq



Solution of equation of motion (2)

d’qg Kk ) k

aw me O T

q(t) = Acoswt+ BSinwt  General solution
q(0)=q,, dQ/dt‘t:o =v(0)=0 Initial conditions
A=q,, B=0

q(t)=0q,cosmt, r=q,coswt+r,



Potential energy and force (1)

Definition of potential energy E(r) at position r:

E(r):—jF-dr Position r
C

Integrate dot-
product of F

and dr from O L
to r along C. Origin O Force F

Displacement dr



Potential energy and force (2)

Change in potential energy by displacement Ar.
E(r+Ar)—E(r)=E(x+Ax,y+Ay, 2+ Az)-E(x,Y,2)
= E(X+AX, Y+ Ay, 2+Az)—-E(X,y + Ay, 2 + A7)
+E(X, y+Ay,z+Az)-E(X,y,2+Az)

+E(x,y,z+Az)-E(x,y,2)
IEAX-FﬁAy-FEAZ =VE - Ar
OX oy 0z
Since
E(r+Ar)—E(r)=-F-Ar
we obtain

F=-VE Force can be calculated from potential energy.




Energy conservation law (1)

 In an isolated system, the sum (denoted
by H) of potential energy E and kinetic
energy K remains constant.

* Kinetic energy

K =2 mlvf
2

* Proof of the conservation law
dH dK dE dv dx OE

= mv
dt dt dt dt dt OX
=mv-a-v-F=v-(ma-F)=0




Energy conservation law (2)

"

Lift
h
W =— .[ (- mg )dz

0
=mgh
74 :  Work increases

the potential
0 = ? V=0

energy.
E =W =mgh
F=-mg

Release

1 .o
z=——gt°+h=0
29

Potential energy decreases.
Kinetic energy increases.

The sum is unchanged.
10



Energy conservation law (3)

Harmonic oscillator

r(t)=q, coswt +r, Ir\/\/\/\,O
v(t)=dr(t)/dt = —q,sin ot
K

H =D+ [rt)-r.

2
2
sin’ a)t+k%cos2 ot :%kqj

. mg;o’



Molecular dynamics method

Molecular dynamics (MD) method calculates the
time variation of the positions and the velocities of
the atoms in a molecular system, evaluating the
forces from the potential energy function and
integrating Newton’s equations of motion.

The equations of motion for a system composed of
more than two atoms cannot be integrated
analytically.

In this case, they are integrated numerically, where
the whole calculation is decomposed into a series of
the calculations for a very short time period.

Accuracy of the numerical integration is evaluated
by examining the energy conservation.

12



Velocity Verlet integrator

(1) Calculate force

@ s -x)sof- (@ Calculate velocities

x(1) > x(t+At) at t+At/2

A

® @ @ Calculate

s (o) coordinates at f+At
X X(1+
@ Calculate force
V J B Calculate velocities
v(t) ? v(t+At/2) ? v(t+Af) at t+At

v(t+%j=v(t)+f(x(t))m v(t+At)=v[t+%j+WAt @ Return tO @ and
repeat

13



Harmonic oscillator (1)

n ] m
Harmonic oscillator W
Mass: m < S

Spring length: r r
Length of unstrained spring: r,
Force constant: k

F=—k(r-r,) F =—kqg




Harmonic oscillator (2)

* A Perl program (osc.pl) that numerically
integrates the equation of motion of harmonic
oscillator with velocity Verlet method

« |nitial position: g(0)=1, initial velocity: v(0)=0

$9=1.0,%v=0.0; ($e,$f)=calc_force($q);
$m=1.0,%k=1.0; for($i=1,%i<=%$nstep;$i+t+) {
$dt=0.01,;%$nstep=100; $v+=0.5*$f/Sm*$dt;
sub calc_force { $qg+=3v*$dt;
my $q=%$_L[01; ($e,$f)=calc_force($q);
my $f=-%$k*$q; $v+=0.5*$f/Sm*$dt;
my $e=0.5*$k*$q**2; $H=0.5*$m*Pv**2+%e;
return ($e,$f); print OUT $i*%$dt,",",%$q,
b "/"/$V/"/"/$H/"¥n";
open(OUT,">osc$dt.csv™) ;| | } 15




Exercise 1

« Calculate the averages of the absolute
differences of total energies and its initial
value <|H-H,|>, changing the time steps as
$dt=0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 in
osc.pl.

 Plot <|H-H,|> against the time step in the
Excel sheet osc.xlsx.

 Briefly discuss the result.

16



Error depends on time step
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Plots of $q against $v
calculated with $dt = 0.1
(black), 0.5 (red).

y = 0.0633x2 - 0.0005x + 2E-05 #»

4

V74

0.2 04 0.6 0.8 1
Time step

Plot of <|H-H,|> against $dt.

2 2
mv kq 5 5
H= + :0.5»V +q° =1
5 q

2

|H—H,| corresponds deviation from the circle.
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Choice of appropriate time step

The smaller time step causes the smaller
error in the total energy.

In general, 1/10 — 1/20 of the cycle of the
fastest motion is used for the time step.

In the case of a protein, the fastest motion
is the bond-stretching motion (3000 cm™;
10 fs) of X—H bonds (X=C, N, O, or S).

Therefore, 0.5 — 1.0 fs is appropriate.

18



A system with many atoms (1)

* A system composed of atoms with van der

Waals interactions (vdw.pl)

e,

, ®
O

$width

$natom=3;
$width=10.0;

$scale=1.0;
$fcap=1.0;

$sigma=1.0;
$epsilon=1.0;
$mass=1.0;

$nstep=100000;
$nsave=100;

$dt=0.001;
$seed=110601;

=

™= FHE ™ HE

=

Number of particles
Width of initial
particle distribution
Scaling factor for
initial velocity
Force constant for
spherical boundary
Atom radius

Well depth

Atomic mass

Number of MD steps
Frequency of saving
trajectory

Time step

Random seed

19




A system with many atoms (2)

* |nitial arrangement

— Atoms are randomly placed with in a cube with
the edge length of Swidth.

e |nitial velocities

— Randomly assigned. Their magnitude can be
changed by $scale parameter.

» Potential energy function:

E (I’ ): , r; is distance from origin.
cap f (r—-r, ) r>r Fout i St o the half of $width.



A system with many atoms (3)

« Result can be visualized by using UCSF Chimera.
1. Double-click the icon of Chimera 1.5.2. Q

2. Choose “Tools” — “MD/Ensemble Analysis” —
“‘MD Movie.” Set Trajectory format to “PDB”, PDB
frames contained in to “Single file”, and
“vdw.pdb” to the file. Then, click “OK.”

3. Choose “Actions” — “Atoms/Bonds” — “stick” to
show atoms.

4. Click playback button to start animation.

« Examine the effect on the dynamics of the
parameters.

21



Comparison with experimental data

* Integration of Newton’s equations of
motion corresponds to the simulation of
the dynamics of an isolated system.

* Experimentally observed data are the
averages over a huge number (say 1023)
of molecules.

* Are the results from molecular simulations
comparable with the experimental data?

22



Real system

Protein

An isolated system
(Constant-NVE)

A constant-temperature and
constant-volume (constant-
NVT) system composed of

1023 protein molecules 23



Constant-NVT system (1)

The system is composed of many identical sub-systems.

Each sub-system is composed of a protein molecule and
its surrounding water molecules.

Each sub-system can exchange heat with its neighbors.

Number of the unit system and the total energy of the
whole system are constant. 24



Constant-NVT system (2)

* Experimentally observed data are the averages
of the observables of each state weighted by its
probability of existence.

(Ay=Ap, > p=1 p; probability of existence

 Distribution with maximum entropy
= canonical distribution
p, =2 exp(-e/ksT) e; energy of state j
Z=Yexp(-e/ksT)  Z: partition function

25



Constant-NVT system (3)

* In a molecular simulation, each state in the
whole system is generated sequentially.

Weighted average
i B (X)=2pX%

Experimental data "

26



Ensemble average

Evaluate the ensemble average of the total
energy of a harmonic oscillator

H(a, p)

2 exp{_ H(a, p)}
P K pla.p)= il
2m 2 ’ _[exp _H(g, p) dadp
KgT

(H)=[H(a. p)e(g. p)dadp =ksT  Exact value

Met
Met
Met

NOC
N0OC

N0OC

1: Numerical integration with grid
2: Monte Carlo integration
3: Importance sampling

27



1: Numerical integration with grid

R

\

\

> q

« Evaluate exp(-H/kgT)

at each grid point and
compute its sum and
the sum of the product
with H.

Only the grid points
within =10 < g <10
and -10 < p <10 are
considered.

Plot the ratio of the
sums (l.e. <H>)
against the number of
grid points.

Evaluate H and exp(—H/kgT). 28



2: Monte Carlo integration

>

> q

« Draw g and p from a

uniform distribution
within =10 < g <10
and -10 < p < 10.
Evaluate exp(-H/kgT)
at each point and
compute its sum and
the sum of the product
with H.

Plot the ratio of the
sums (l.e. <H>)
against the number of
the sample points.

29



Comparison of the results (1)

2.0

Black: Grid
Red: Monte Carlo

0 2000 4000 6000 8000 10000
Number of points

Monte Carlo integration is slow to converge.

30



Problem of Monte Carlo integration

« Erroris inversely proportional to the square root
of the number of samples— To decrease the
error by a factor of 10, 100 times larger samples
are required.

 However, grid approach is not applicable to
biomacromolecules due to their large internal
degrees of freedom. A 100-residue protein has
more than 2190=1030 different conformations.

* |tis necessary to improve the accuracy of the
Monte Carlo method.
—Iimportance sampling

31



Importance sampling

The Monte Carlo integration calculates the
weighted sum of H with the weighting factors of
exp(—H/kgT).

At (q, p) = (0, 0), the weighting factor is one,
whereas at (g, p) = (10, 10), itis 3.7 X 10744,

The contributions to the average are different
between sample points, which decreases
computational efficiency.

The efficiency is maximized when the number of
sample points from a region is proportional to
the weighting factor, exp(-H/kg T), of the

region. —>|mportance sampllng

32



3: Importance sampling
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* Draw samples from
a distribution
proportional to the
weight
exp(—H/kgT).

 Evaluate H at each
sample point and
calculate the
average.

* Plot the average
<H> against the
number of
samples.



A Perl program

$kT7=1.0;
$pi=atan2(1.0,1.0)*4.0;
$max_npt=100;

for($npt=2;%npt<=$max_npt,;$npt+=2) {
$val1=0.0;
for($i=0,;%i<$npt**2,;++%$i) {
$x1=rand;
$x2=rand;

#Convert uniform distribution into normal distribution.
$q=sqrt(-2.0*$kT*Log($x1))*cos(2.0*$pi*$x2);
$p=sqrt(-2.0*$kT*Log($x1))*sin(2.0*$pi*$x2);
$H=0.5*$q**2+0.5*$p**2;
$val1+=%H; #Sum of total energy

b
printf("%d %Zf¥n" ,$npt**2,%vall1/($npt**2));

34




Comparison of the results (2)

2.0 —_——
Black: grid
Red: Monte Carlo
1.5
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Number of points

Accuracy and efficiency are improved.
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Uniform distribution

Sample generation (1)

0.9¢

0.8

0.7r
0.6
0.5¢
0.4r
0.3
0.2+
0.1r

Yi

Cumulative distribution function

Y

~

A

0= J Pl

Normal distribution
p(x) -
y | f

-2 0

2

4

Conversion into normal distribution

g(xi): Yir X

=97(y;)

36



Sample generation (2)

* This method is possible only when the cumulative
distribution function (CDF) can be calculated.

|t is impossible to obtain an analytical form of the
CDF for a system of biomacromolecules, because
the relation between bonded and non-bonded
Interactions is quite complicated.

It is also impossible to calculate it numerically due
to the huge internal degrees of freedom.

Use Markov chain

37



Markov chain

Transition probability 7

T o
P
k /"jj

/

Let the probability of
transition from state / to
state j be ;.

Let the probability of
existence of state / before
transition be p°, the
probability of existence of
state j after transition is
given by,

P,l' = Zpioﬂij

Transition probability
satisfies the following:

Zﬂ'ij =1
j

38



Example of Markov chain (1)

« Consider two states.
 Let transition probabilities be:

M, =0.6

m,=0.4

My, = 0.3

My, = 0.7

o Start with state 1

Step

State1 State 2

0
1
2
3

1 0

0.6 0.4
0.48 0.52
0.444 0.556

Probability

1

© o o o
NS b OO

o

10 15 20
Step

39



Example of Markov chain (2)

* When stating
with state 2, the 2. “_
—

‘S
©

probabilities g0
converge to the |
same values. Step

» After convergence, p = pTT.

* p IS a eigenvector of matrix r.
— P Is uniquely determined by Tr.

40



Metropolis method (1)

 \We want to derive transition matrix from
probability distribution.

 The detailed balance condition is the
sufficient condition for p = pTr.

Py = P = Zp. .,—Zp, ,.—p,Zﬂ,.—p,
* Metropolis method

Ty = Q; If p,>pandi= |

7, =0!ij(,0j/pi) if p. < p andi= ]

& = Aji Z“ij =1 7 =1—Z7fu = Zaij(l_pj/pi)

j#i ji j=iand 41
Pj<Pi



Metropolis method (2)

Randomly move an atom within a cube
centered at the atom with the edge @ Q
length of12A to generate a new state. pasasanass @
o, =—— Within the cube A
TN, N
o; =0 Outside the cube @ --------- @

The move is accepted if the energy of the new state, ¢, is
lower than that of the original state, e,. Otherwise, the move is
accepted with the following probablllty

P, /,oi = exp[— (ej —e )/kBsz exp(— Aeji/kBT)
If not accepted, the atom does not move.

7Tij :1_27%‘ :Z(“ij ‘”ij): Z“ij(l‘/)j//’i)

J#i J#i j=iand 42
Pj<Pi



An application

A harmonic oscillator
* [nitial condition: (q, p) = (0, 0)

2
1.8

1.6 H
1.4 A

-

— e

<H>

0.8
0.6
0.4
0.2

0

0 2000 4000 6000 8000 10000
Number of samples



A Perl program

$nstep=10000; #Number of steps
($q,%p)=(0.0,0.0); #Initial states
$delta=1.0; #Maximum displacement
$kT=1.0,;%m=1.0;%k=1.0; #kT, mass, force constant

$delta_g=%delta/sqrt(s$k);
$delta_p=%delta*sqrt($m);

open(OUT,">metropolis$delta.csv"); HOutput file
$ave=0.0;
$H=&calc_H(%$q,%$p); #Initial energy
for($i=1;%1<=%nstep;$i++) {
$g_new=3%$qg+2.0*$delta_q*(rand()-0.5); #Trial move
$p_new=3%$p+2.0*$delta_p*(rand()-0.5); #Trial move

>

$H_new=&calc_H($g_new,$p_new) ;

$probability=exp(($H-$H_new) /$kT) ;

if($probability >= 1.0 11 $probability >= rand(0) { #Metropolis criterion
$9=%qg_new,;$p=%p_new,;$H=%H_new;

X

$ave+=%H;

printf(OUT "%d,%f¥n" ,$i,%ave/$i) if($i % 100 == 0);

close(OUT) ;

sub calc_H { #Energy function

>

my ($q,%p)=a_;
return 0.5*$p*3$p/Im+0.5*3k*$q*3$q;

14




Exercise 2

* Download metropolis.pl from the web page of
this lecture and double-click the icon of the
downloaded file to execute it.

— Plot <H> against the sample number. Check
whether <H> converges to 1.

* Check the convergence changing the value
for $delta.

— Try $delta=0.1.

* Discuss why the convergence depends on
$delta.

45



Application to biomacromolecules

* Metroplis method can be realized by choosing
an atom randomly and moving the atom to a
random position.

 However, such a move changes the bond length
and causes increase of energy. —Probability of
acceptance is very small.

* To avoid this problem, only dihedral angles are
changed. But, this has following drawbacks.
—lt is difficult to handle multiple molecules.
—In the region where atoms are closely packed,
such as protein cores, change in the dihedral
angle will cause steric clashes.

46



Constant-temperature MD (1)

Constant-temperature MD can generate a
canonical ensemble.

This can be more easily applied to the
systems of biomacromolecules than Monte
Carlo method.

The ensemble average is given by the time
average.

Temperature is regulated by modifying the
velocity.

—NkT ZN:

=1

47



Constant-temperature MD (2)

Nosé method

Constraint method

— Only the coordinate part
follows the canonical distribution.

Langevin dynamics
— Temperature is regulated by

Heat bath

friction and random force.
Berendsen weak-coupling method

— Does not generate a canonical ensemble.

— Simple and easy to use.

Degrees of freedom

Nosé-Hoover chain method - of the heat bath are
explicitly considered.

48



Langevin dynamics

* The physical system exchanges heat with
the heat bath through collisions with
fictitious particles of the heat bath.

« Equations of motion
ma = F(x)-yv+R(t)
Friction Random force caused by the collisions

 Random force R satisfies the following:

(R(t))=0, (R(t)-R(t'))=6k,Tys(t—t)
Average Variance and covariance

49



An application

* A system composed of atoms with van der
Waals interactions (vdw_langevin.pl)

$natom=4; # Number of particles 20
$width=10.0; # Width of initial 18
particle distribution 16
$fcap=1.0; # Force constant for > 14
spherical boundary gjz 1 I )
$sigma=1.0; # Atom radius &
$epsilon=1.0; # Well depth g 10
$mass=1.0; # Atomic mass Q 8
$nstep=100000; # Number of MD steps ¥ 6
$nsave=100; # Frequency of saving 4
trajectory 2
$dt=0.001; # Time step 0
$seed=120528; # Random seed 0 20 40 60 80 100
$gamma=10.0; # friction coefficient Time
$kT=1.0;

Average: 5.91 (exact value: 6) 5



Berendsen weak-coupling method

1. Calculate instantaneous temperature 7' at
every step of velocity Verlet.

3 r & mi‘vi‘z
E|\||<T = ;

=1
2. Scale velocities by a factor of y. Constant r
controls the speed of adjustment.

/ V2
g
T \ T
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How to send your report

Use PowerPoint to create your report.

Report should include the results and
discussion of exercises 1 and 2.

Send the PowerPoint file to
tterada@iu.a.u-tokyo.ac.jp.

Subject of the e-mail should be “Molecular
modeling” and write your name and ID
card number in the body of the e-mail.
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