May 28, 2012 Molecular Modeling and Simulation

Molecular Dynamics and Monte Carlo Methods

Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tohru Terada

Contents

- Equations of motion
- Molecular dynamics (MD) method

– Exercise 1

- Isothermal isobaric ensemble
- Monte Carlo methods
 - Exercise 2
- Constant-temperature MD method

Classical mechanics

- Newton's equation of motion
 F = ma
 F: force, m: mass, a: acceleration
 3D vectors are denoted by bold-face
 symbols.
 Scalar values are denoted by italic symbols.
- **a** is second-derivative of position **r** with respect to time *t*.

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right)$$
$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} = \left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}, \frac{d^2z}{dt^2}\right)$$

Solution of equation of motion (1)

Fall of a body of mass *m* from height *h*

Solution of equation of motion (2)

• Harmonic oscillator Mass: mSpring length: rLength of unstrained spring: r_0 Force constant: k

$$F = -k(r - r_0) \qquad \qquad F = -kq$$
$$m\frac{d^2r}{dt^2} = -k(r - r_0) \qquad \qquad q = r - r_0 \qquad \qquad m\frac{d^2q}{dt^2} = -kq$$

Solution of equation of motion (2)

$$\frac{d^2 q}{dt^2} = -\frac{k}{m}q = -\omega^2 q, \quad \omega = \sqrt{\frac{k}{m}}$$

$$q(t) = A\cos\omega t + B\sin\omega t \quad \text{General solution}$$

$$q(0) = q_0, \quad dq/dt \Big|_{t=0} = v(0) = 0 \quad \text{Initial conditions}$$

$$A = q_0, \quad B = 0$$

$$q(t) = q_0\cos\omega t, \quad r = q_0\cos\omega t + r_0$$

Potential energy and force (1)

Definition of potential energy $E(\mathbf{r})$ at position \mathbf{r} :

Potential energy and force (2)

Change in potential energy by displacement Δr .

$$E(\mathbf{r} + \Delta \mathbf{r}) - E(\mathbf{r}) = E(x + \Delta x, y + \Delta y, z + \Delta z) - E(x, y, z)$$

= $E(x + \Delta x, y + \Delta y, z + \Delta z) - E(x, y + \Delta y, z + \Delta z)$
+ $E(x, y + \Delta y, z + \Delta z) - E(x, y, z + \Delta z)$
+ $E(x, y, z + \Delta z) - E(x, y, z)$
= $\frac{\partial E}{\partial x} \Delta x + \frac{\partial E}{\partial y} \Delta y + \frac{\partial E}{\partial z} \Delta z = \nabla E \cdot \Delta \mathbf{r}$

Since

 $E(\mathbf{r} + \Delta \mathbf{r}) - E(\mathbf{r}) = -\mathbf{F} \cdot \Delta \mathbf{r}$ we obtain

 $\mathbf{F} = -\nabla E$ | Force can be calculated from potential energy.

Energy conservation law (1)

- In an isolated system, the sum (denoted by *H*) of potential energy *E* and kinetic energy *K* remains constant.
- Kinetic energy

$$K = \frac{1}{2} m \big| \mathbf{v} \big|^2$$

Proof of the conservation law

$$\frac{dH}{dt} = \frac{dK}{dt} + \frac{dE}{dt} = m\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} + \frac{d\mathbf{x}}{dt} \cdot \frac{\partial E}{\partial \mathbf{x}}$$
$$= m\mathbf{v} \cdot \mathbf{a} - \mathbf{v} \cdot \mathbf{F} = \mathbf{v} \cdot (m\mathbf{a} - \mathbf{F}) = 0$$

Energy conservation law (2)

The sum is unchanged.

Energy conservation law (3)

Molecular dynamics method

- Molecular dynamics (MD) method calculates the time variation of the positions and the velocities of the atoms in a molecular system, evaluating the forces from the potential energy function and integrating Newton's equations of motion.
- The equations of motion for a system composed of more than two atoms cannot be integrated analytically.
- In this case, they are integrated numerically, where the whole calculation is decomposed into a series of the calculations for a very short time period.
- Accuracy of the numerical integration is evaluated by examining the energy conservation.

Velocity Verlet integrator

Harmonic oscillator (1)

• Harmonic oscillator Mass: mSpring length: rLength of unstrained spring: r_0 Force constant: k

$$F = -k(r - r_0) \qquad F = -kq$$
$$m\frac{d^2r}{dt^2} = -k(r - r_0) \qquad q = r - r_0 \qquad m\frac{d^2q}{dt^2} = -kq$$

Harmonic oscillator (2)

- A Perl program (osc.pl) that numerically integrates the equation of motion of harmonic oscillator with velocity Verlet method
- Initial position: q(0)=1, initial velocity: v(0)=0

```
$q=1.0;$v=0.0;
                            ($e,$f)=calc_force($q);
$m=1.0;$k=1.0;
                           for($i=1;$i<=$nstep;$i++) {</pre>
$dt=0.01;$nstep=100;
                              $v+=0.5*$f/$m*$dt;
sub calc_force {
                              $q+=$v*$dt;
  my $q=$_[0];
                              ($e,$f)=calc_force($q);
  my $f=-$k*$q;
                              $v+=0.5*$f/$m*$dt;
  my $e=0.5*$k*$q**2;
                              $H=0.5*$m*$v**2+$e;
  return ($e,$f);
                              print OUT $i*$dt,",",$q,
                                ",",$v,",",$H,"¥n";
}
                                                      15
open(OUT,">osc$dt.csv");
                           }
```

Exercise 1

- Calculate the averages of the absolute differences of total energies and its initial value <|*H*-*H*₀|>, changing the time steps as \$dt=0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 in osc.pl.
- Plot <|H–H₀|> against the time step in the Excel sheet osc.xlsx.
- Briefly discuss the result.

Error depends on time step

Plots of \$q against \$v

calculated with dt = 0.1

(black), 0.5 (red).

Plot of $\langle H - H_0 \rangle$ against \$dt.

$$H = \frac{mv^2}{2} + \frac{kq^2}{2} = 0.5 \quad \clubsuit \quad v^2 + q^2 = 1$$

 $|H-H_0|$ corresponds deviation from the circle.

Choice of appropriate time step

- The smaller time step causes the smaller error in the total energy.
- In general, 1/10 1/20 of the cycle of the fastest motion is used for the time step.
- In the case of a protein, the fastest motion is the bond-stretching motion (3000 cm⁻¹; 10 fs) of X–H bonds (X=C, N, O, or S).
- Therefore, 0.5 1.0 fs is appropriate.

A system with many atoms (1)

 A system composed of atoms with van der Waals interactions (vdw.pl)

<pre>\$natom=3;</pre>	#	Number of particles
\$width=10.0;	#	Width of initial
		particle distribution
<pre>\$scale=1.0;</pre>	#	Scaling factor for
		initial velocity
\$fcap=1.0;	#	Force constant for
		spherical boundary
\$sigma=1.0;	#	Atom radius
<pre>\$epsilon=1.0;</pre>	#	Well depth
\$mass=1.0;	#	Atomic mass
\$nstep=100000;	#	Number of MD steps
\$nsave=100;	#	Frequency of saving
		trajectory
\$dt=0.001;	#	Time step
\$seed=110601;	#	Random seed

A system with many atoms (2)

- Initial arrangement
 - Atoms are randomly placed with in a cube with the edge length of \$width.
- Initial velocities
 - Randomly assigned. Their magnitude can be changed by \$scale parameter.
- Potential energy function:

$$E = \sum_{i=1}^{N} \sum_{j=i+1}^{N} 4\varepsilon \left(\frac{\sigma^{12}}{r_{ij}^{12}} - \frac{\sigma^{6}}{r_{ij}^{6}} \right) + \sum_{i=1}^{N} E_{cap}(r_{i})$$

$$E_{cap}(r_{i}) = \begin{cases} 0 & r_{i} < r_{cut} \\ f_{cap}(r_{i} - r_{cut})^{2} & r_{i} \ge r_{cut} \end{cases}$$

$$r_{i} \text{ is distance from origin.}$$

$$r_{cut} \text{ is set to the half of $width.}$$

$$r_{cut} \text{ is set to the half of $width.}$$

A system with many atoms (3)

- Result can be visualized by using UCSF Chimera.
- 1. Double-click the icon of Chimera 1.5.2.
- Choose "Tools" → "MD/Ensemble Analysis" → "MD Movie." Set Trajectory format to "PDB", PDB frames contained in to "Single file", and "vdw.pdb" to the file. Then, click "OK."
- 3. Choose "Actions" \rightarrow "Atoms/Bonds" \rightarrow "stick" to show atoms.
- 4. Click playback button to start animation.
- Examine the effect on the dynamics of the parameters.

Comparison with experimental data

- Integration of Newton's equations of motion corresponds to the simulation of the dynamics of an isolated system.
- Experimentally observed data are the averages over a huge number (say 10²³) of molecules.
- Are the results from molecular simulations comparable with the experimental data?

Real system

Protein

An isolated system (Constant-*NVE*)

A constant-temperature and constant-volume (constant-*NVT*) system composed of 10²³ protein molecules ²³

Constant-*NVT* system (1)

- The system is composed of many identical sub-systems.
- Each sub-system is composed of a protein molecule and its surrounding water molecules.
- Each sub-system can exchange heat with its neighbors.
- Number of the unit system and the total energy of the whole system are constant.

Constant-*NVT* system (2)

 Experimentally observed data are the averages of the observables of each state weighted by its probability of existence.

 $\langle A \rangle = A_i \rho_i, \quad \sum_i \rho_i = 1 \quad \rho_i$: probability of existence

• Distribution with maximum entropy

= canonical distribution $\rho_i = Z^{-1} \exp(-e_i/k_{\rm B}T)$ e_i : energy of state *i* $Z = \sum_i \exp(-e_i/k_{\rm B}T)$ Z: partition function

Constant-*NVT* system (3)

• In a molecular simulation, each state in the whole system is generated sequentially.

Ensemble average

 Evaluate the ensemble average of the total energy of a harmonic oscillator

$$H(q,p) = \frac{p^2}{2m} + \frac{k}{2}q^2, \quad \rho(q,p) = \frac{\exp\left[-\frac{H(q,p)}{k_{\rm B}T}\right]}{\int \exp\left[-\frac{H(q,p)}{k_{\rm B}T}\right] dqdp}$$

 $\langle H \rangle = \int H(q, p) \rho(q, p) dq dp = k_{\rm B} T$ Exact value

- Method 1: Numerical integration with grid
- Method 2: Monte Carlo integration
- Method 3: Importance sampling

1: Numerical integration with grid

- Evaluate exp(-H/k_BT) at each grid point and compute its sum and the sum of the product with H.
- Only the grid points within $-10 \le q \le 10$ and $-10 \le p \le 10$ are considered.
- Plot the ratio of the sums (*i.e.* <*H*>) against the number of grid points.

Evaluate *H* and $exp(-H/k_BT)$.

2: Monte Carlo integration

- Draw q and p from a uniform distribution within $-10 \le q \le 10$ and $-10 \le p \le 10$.
- Evaluate exp(-H/k_BT) at each point and compute its sum and the sum of the product with H.
- Plot the ratio of the sums (*i.e.* <*H*>) against the number of the sample points.

Comparison of the results (1)

30

Problem of Monte Carlo integration

- Error is inversely proportional to the square root of the number of samples→To decrease the error by a factor of 10, 100 times larger samples are required.
- However, grid approach is not applicable to biomacromolecules due to their large internal degrees of freedom. A 100-residue protein has more than 2¹⁰⁰ ≒ 10³⁰ different conformations.
- It is necessary to improve the accuracy of the Monte Carlo method.
 →importance sampling

Importance sampling

- The Monte Carlo integration calculates the weighted sum of *H* with the weighting factors of $exp(-H/k_BT)$.
- At (q, p) = (0, 0), the weighting factor is one, whereas at (q, p) = (10, 10), it is 3.7×10^{-44} .
- The contributions to the average are different between sample points, which decreases computational efficiency.
- The efficiency is maximized when the number of sample points from a region is proportional to the weighting factor, exp(−*H*/*k*_B*T*), of the region.→importance sampling

3: Importance sampling

- Draw samples from a distribution proportional to the weight exp(-H/k_BT).
- Evaluate *H* at each sample point and calculate the average.
- Plot the average <H> against the number of samples.

A Perl program

```
$kT=1.0;
$pi=atan2(1.0,1.0)*4.0;
$max npt=100;
for($npt=2;$npt<=$max_npt;$npt+=2) {</pre>
  $val1=0.0;
  for($i=0;$i<$npt**2;++$i) {</pre>
    $x1=rand;
    $x2=rand;
#Convert uniform distribution into normal distribution.
    $q=sqrt(-2.0*$kT*loq($x1))*cos(2.0*$pi*$x2);
    $p=sqrt(-2.0*$kT*loq($x1))*sin(2.0*$pi*$x2);
    $H=0.5*$a**2+0.5*$p**2;
    $val1+=$H;
                           #Sum of total energy
  }
  printf("%d %f¥n",$npt**2,$val1/($npt**2));
}
```

Comparison of the results (2)

Sample generation (1)

Sample generation (2)

- This method is possible only when the cumulative distribution function (CDF) can be calculated.
- It is impossible to obtain an analytical form of the CDF for a system of biomacromolecules, because the relation between bonded and non-bonded interactions is quite complicated.
- It is also impossible to calculate it numerically due to the huge internal degrees of freedom.

Use Markov chain

Markov chain

- Let the probability of transition from state *i* to state *j* be π_{ii} .
- Let the probability of existence of state *i* before transition be ρ⁰_i, the probability of existence of state *j* after transition is given by,

$$ho_j^1 = \sum_i
ho_i^0 \pi_{ij}$$

• Transition probability satisfies the following:

$$\sum_{j} \pi_{ij} = 1$$

Example of Markov chain (1)

- Consider two states.
- Let transition probabilities be:

$\pi_{11} = 0.6$	$\pi_{12} = 0.4$
$\pi_{21} = 0.3$	$\pi_{22} = 0.7$

Start with state 1

Step	State 1	State 2
0	1	0
1	0.6	0.4
2	0.48	0.52
3	0.444	0.556

Example of Markov chain (2)

 When stating with state 2, the probabilities converge to the same values.

- After convergence, $\rho = \rho \pi$.
- ρ is a eigenvector of matrix π.
 → ρ is uniquely determined by π.

Metropolis method (1)

- We want to derive transition matrix from probability distribution.
- The detailed balance condition is the sufficient condition for $\rho = \rho \pi$.

$$\rho_i \pi_{ij} = \rho_j \pi_{ji} \implies \sum_i \rho_i \pi_{ij} = \sum_i \rho_j \pi_{ji} = \rho_j \sum_i \pi_{ji} = \rho_j$$

• Metropolis method:

$$\begin{cases} \pi_{ij} = \alpha_{ij} & \text{if } \rho_j \ge \rho_i \text{ and } i \neq j \\ \pi_{ij} = \alpha_{ij} \left(\rho_j / \rho_i \right) & \text{if } \rho_j < \rho_i \text{ and } i \neq j \end{cases}$$

$$\alpha_{ij} = \alpha_{ji}, \quad \sum_{j \ne i} \alpha_{ij} = 1, \quad \pi_{ii} = 1 - \sum_{j \ne i} \pi_{ij} = \sum_{\substack{j \ne i \text{ and } \rho_j < \rho_i}} \alpha_{ij} \left(1 - \rho_j / \rho_i \right)$$

$$41$$

Metropolis method (2)

 Randomly move an atom within a cube centered at the atom with the edge length of 2Δ to generate a new state.

 $\alpha_{ij} = \frac{1}{N_{\Delta}}$ Within the cube

 $\alpha_{ij} = 0$ Outside the cube

• The move is accepted if the energy of the new state, *e_j*, is lower than that of the original state, *e_j*. Otherwise, the move is accepted with the following probability:

$$\rho_j / \rho_i = \exp\left[-\left(e_j - e_i\right)/k_{\rm B}T\right] = \exp\left(-\Delta e_{ji}/k_{\rm B}T\right)$$

• If not accepted, the atom does not move.

$$\pi_{ii} = 1 - \sum_{j \neq i} \pi_{ij} = \sum_{j \neq i} \left(\alpha_{ij} - \pi_{ij} \right) = \sum_{\substack{j \neq i \text{ and} \\ \rho_j < \rho_i}} \alpha_{ij} \left(1 - \rho_j / \rho_i \right)$$

An application

- A harmonic oscillator
- Initial condition: (q, p) = (0, 0)

A Perl program

```
$nstep=10000;
                                                  #Number of steps
($q,$p)=(0.0,0.0);
                                                  #Initial states
$delta=1.0;
                                                  #Maximum displacement
$kT=1.0;$m=1.0;$k=1.0;
                                                  #kT, mass, force constant
$delta_q=$delta/sqrt($k);
$delta p=$delta*sqrt($m);
open(OUT,">metropolis$delta.csv");
                                                  #Output file
$ave=0.0;
$H=&calc H($q,$p);
                                                  #Initial energy
for($i=1;$i<=$nstep;$i++) {</pre>
  $q new=$q+2.0*$delta q*(rand()-0.5);
                                                  #Trial move
  $p new=$p+2.0*$delta p*(rand()-0.5);
                                                  #Trial move
  $H_new=&calc_H($q_new,$p_new);
  $probability=exp(($H-$H new)/$kT);
  if($probability >= 1.0 || $probability >= rand()) { #Metropolis criterion
    $q=$q new;$p=$p new;$H=$H new;
  }
  $ave+=$H;
  printf(OUT "%d,%f¥n",$i,$ave/$i) if($i % 100 == 0);
}
close(OUT);
sub calc H {
                                                  #Energy function
  my ($q,$p)=a ;
  return 0.5*$p*$p/$m+0.5*$k*$q*$q;
}
```

Exercise 2

- Download metropolis.pl from the web page of this lecture and double-click the icon of the downloaded file to execute it.
 - Plot <*H*> against the sample number. Check whether <*H*> converges to 1.
- Check the convergence changing the value for \$delta.

– Try \$delta=0.1.

 Discuss why the convergence depends on \$delta.

Application to biomacromolecules

- Metroplis method can be realized by choosing an atom randomly and moving the atom to a random position.
- However, such a move changes the bond length and causes increase of energy. →Probability of acceptance is very small.
- To avoid this problem, only dihedral angles are changed. But, this has following drawbacks.

 →It is difficult to handle multiple molecules.
 →In the region where atoms are closely packed, such as protein cores, change in the dihedral angle will cause steric clashes.

Constant-temperature MD (1)

- Constant-temperature MD can generate a canonical ensemble.
- This can be more easily applied to the systems of biomacromolecules than Monte Carlo method.
- The ensemble average is given by the time average.
- Temperature is regulated by modifying the velocity.

$$\frac{3}{2}NkT = \sum_{i=1}^{N} \frac{m_i \left| \mathbf{v}_i \right|^2}{2}$$

Constant-temperature MD (2)

- Nosé method
- Degrees of freedom of the heat bath are Nosé-Hoover chain method explicitly considered.
- Constraint method
 - Only the coordinate part follows the canonical distribution.
- Langevin dynamics
 - Temperature is regulated by friction and random force.

- Berendsen weak-coupling method
 - Does not generate a canonical ensemble.
 - Simple and easy to use.

Langevin dynamics

- The physical system exchanges heat with the heat bath through collisions with fictitious particles of the heat bath.
- Equations of motion

 $m\mathbf{a} = \mathbf{F}(\mathbf{x}) - \gamma \mathbf{v} + \mathbf{R}(t)$

Friction Random force caused by the collisions

• Random force **R** satisfies the following:

 $\langle \mathbf{R}(t) \rangle = 0, \quad \langle \mathbf{R}(t) \cdot \mathbf{R}(t') \rangle = 6k_{\rm B}T\gamma\delta(t-t')$

Average Variance and covariance

An application

 A system composed of atoms with van der Waals interactions (vdw_langevin.pl)

<pre>\$natom=4; \$width=10.0;</pre>	<pre># Number of particles # Width of initial particle distribution</pre>	20 18 16
\$fcap=1.0;	<pre># Force constant for spherical boundary</pre>	
\$sigma=1.0;	# Atom radius	
<pre>\$epsilon=1.0;</pre>	# Well depth	
\$mass=1.0;	# Atomic mass	
\$nstep=100000;	<pre># Number of MD steps</pre>	☑ 6
\$nsave=100;	<pre># Frequency of saving trajectory</pre>	
\$dt=0.001;	# Time step	
\$seed=120528;	# Random seed	0 20 40 60 80 100
\$gamma=10.0;	<pre># friction coefficient</pre>	Time
\$kT=1.0;		
		Average: 5.91 (exact value: 6) ₅₀

Berendsen weak-coupling method

1. Calculate instantaneous temperature *T*' at every step of velocity Verlet.

$$\frac{3}{2}NkT' = \sum_{i=1}^{N} \frac{m_i \left|\mathbf{v}_i\right|^2}{2}$$

2. Scale velocities by a factor of χ . Constant τ controls the speed of adjustment.

$$\chi = \left[1 + \frac{\Delta t}{\tau} \left(\frac{T}{T'} - 1\right)\right]^{1/2}$$

How to send your report

- Use PowerPoint to create your report.
- Report should include the results and discussion of exercises 1 and 2.
- Send the PowerPoint file to tterada@iu.a.u-tokyo.ac.jp.
- Subject of the e-mail should be "Molecular modeling" and write your name and ID card number in the body of the e-mail.