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Classical mechanics
• Newton’s equation of motion

F: force, m: mass, a: acceleration
3D vectors are denoted by bold-face 
symbols.
Scalar values are denoted by italic symbols.

• a is second-derivative of position r with 
respect to time t.
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Solution of equation of motion (1)

• Fall of a body of mass m from height h
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Two initial conditions are required to solve 
second order differential equations. 4



Solution of equation of motion (2)

• Harmonic oscillator
Mass: m
Spring length: r
Length of unstrained spring: r0
Force constant: k
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Solution of equation of motion (2)
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Potential energy and force (1)
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Definition of potential energy E(r) at position r:

Origin O

Position r

Path C

Force F

Displacement dr
Integrate dot-
product of F
and dr from O
to r along C.
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Potential energy and force (2)
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Energy conservation law (1)

• In an isolated system, the sum (denoted 
by H) of potential energy E and kinetic 
energy K remains constant.

• Kinetic energy

• Proof of the conservation law
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Energy conservation law (2)
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Energy conservation law (3)
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Molecular dynamics method
• Molecular dynamics (MD) method calculates the 

time variation of the positions and the velocities of 
the atoms in a molecular system, evaluating the 
forces from the potential energy function and 
integrating Newton’s equations of motion.

• The equations of motion for a system composed of 
more than two atoms cannot be integrated 
analytically.

• In this case, they are integrated numerically, where 
the whole calculation is decomposed into a series of 
the calculations for a very short time period.

• Accuracy of the numerical integration is evaluated 
by examining the energy conservation.
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Velocity Verlet integrator
① Calculate force
② Calculate velocities 

at t+∆t/2
③ Calculate 

coordinates at t+∆t
④ Calculate force
⑤ Calculate velocities 

at t+∆t
⑥ Return to ② and 

repeat 
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Harmonic oscillator (1)

• Harmonic oscillator
Mass: m
Spring length: r
Length of unstrained spring: r0
Force constant: k
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Harmonic oscillator (2)

• A Perl program (osc.pl) that numerically 
integrates the equation of motion of harmonic 
oscillator with velocity Verlet method

• Initial position: q(0)=1, initial velocity: v(0)=0
$q=1.0;$v=0.0;

$m=1.0;$k=1.0;

$dt=0.01;$nstep=100;

sub calc_force {

my $q=$_[0];

my $f=-$k*$q;

my $e=0.5*$k*$q**2;

return ($e,$f);

}

open(OUT,">osc$dt.csv");

($e,$f)=calc_force($q);

for($i=1;$i<=$nstep;$i++) {

$v+=0.5*$f/$m*$dt;

$q+=$v*$dt;

($e,$f)=calc_force($q);

$v+=0.5*$f/$m*$dt;

$H=0.5*$m*$v**2+$e;

print OUT $i*$dt,",",$q,

",",$v,",",$H,"¥n";

}
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Exercise 1

• Calculate the averages of the absolute 
differences of total energies and its initial 
value <|H-H0|>, changing the time steps as 
$dt=0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 in 
osc.pl.

• Plot <|H–H0|> against the time step in the 
Excel sheet osc.xlsx.

• Briefly discuss the result.
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Error depends on time step
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Choice of appropriate time step

• The smaller time step causes the smaller 
error in the total energy.

• In general, 1/10 – 1/20 of the cycle of the 
fastest motion is used for the time step.

• In the case of a protein, the fastest motion 
is the bond-stretching motion (3000 cm−1;
10 fs) of X–H bonds (X=C, N, O, or S).

• Therefore, 0.5 – 1.0 fs is appropriate.
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A system with many atoms (1)

• A system composed of atoms with van der 
Waals interactions (vdw.pl)

$width

$natom=3; # Number of particles

$width=10.0; # Width of initial

particle distribution

$scale=1.0; # Scaling factor for

initial velocity

$fcap=1.0; # Force constant for

spherical boundary

$sigma=1.0; # Atom radius

$epsilon=1.0; # Well depth

$mass=1.0; # Atomic mass

$nstep=100000; # Number of MD steps

$nsave=100; # Frequency of saving

trajectory 

$dt=0.001; # Time step

$seed=110601; # Random seed
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A system with many atoms (2)
• Initial arrangement

– Atoms are randomly placed with in a cube with 
the edge length of $width.

• Initial velocities
– Randomly assigned. Their magnitude can be 

changed by $scale parameter.
• Potential energy function:
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A system with many atoms (3)
• Result can be visualized by using UCSF Chimera.
1. Double-click the icon of Chimera 1.5.2.
2. Choose “Tools” → “MD/Ensemble Analysis” →

“MD Movie.” Set Trajectory format to “PDB”, PDB 
frames contained in to “Single file”, and 
“vdw.pdb” to the file. Then, click “OK.”

3. Choose “Actions” → “Atoms/Bonds” → “stick” to 
show atoms.

4. Click playback button to start animation.
• Examine the effect on the dynamics of the 

parameters.
21



Comparison with experimental data

• Integration of Newton’s equations of 
motion corresponds to the simulation of 
the dynamics of an isolated system.

• Experimentally observed data are the 
averages over a huge number (say 1023) 
of molecules.

• Are the results from molecular simulations 
comparable with the experimental data?
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Real system

An isolated system
(Constant-NVE)

A constant-temperature and 
constant-volume (constant-
NVT) system composed of 

1023 protein molecules

Protein
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Constant-NVT system (1)

• The system is composed of many identical sub-systems.
• Each sub-system is composed of a protein molecule and 

its surrounding water molecules.
• Each sub-system can exchange heat with its neighbors.
• Number of the unit system and the total energy of the 

whole system are constant. 24



Constant-NVT system (2)

• Experimentally observed data are the averages 
of the observables of each state weighted by its 
probability of existence.

i: probability of existence

• Distribution with maximum entropy
= canonical distribution

ei: energy of state i
Z: partition function
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Constant-NVT system (3)

• In a molecular simulation, each state in the 
whole system is generated sequentially.

Sequentially generated

Weighted average

Experimental data
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Ensemble average

• Evaluate the ensemble average of the total 
energy of a harmonic oscillator

• Method 1: Numerical integration with grid
• Method 2: Monte Carlo integration
• Method 3: Importance sampling
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1: Numerical integration with grid 

• Evaluate exp(−H/kBT) 
at each grid point and 
compute its sum and 
the sum of the product 
with H.

• Only the grid points 
within −10 ≤ q ≤ 10 
and −10 ≤ p ≤ 10 are 
considered.

• Plot the ratio of the 
sums (i.e. <H>) 
against the number of 
grid points.

q

p

Evaluate H and exp(−H/kBT). 28



2: Monte Carlo integration
• Draw q and p from a 

uniform distribution 
within −10 ≤ q ≤ 10 
and −10 ≤ p ≤ 10.

• Evaluate exp(−H/kBT) 
at each point and 
compute its sum and 
the sum of the product 
with H.

• Plot the ratio of the 
sums (i.e. <H>) 
against the number of 
the sample points.

q

p
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Comparison of the results (1)

Black: Grid
Red: Monte Carlo

kBT = 1.0

Monte Carlo integration is slow to converge. 30



Problem of Monte Carlo integration

• Error is inversely proportional to the square root 
of the number of samples→To decrease the 
error by a factor of 10, 100 times larger samples 
are required.

• However, grid approach is not applicable to 
biomacromolecules due to their large internal 
degrees of freedom. A 100-residue protein has 
more than 2100≒1030 different conformations.

• It is necessary to improve the accuracy of the 
Monte Carlo method.
→importance sampling
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Importance sampling
• The Monte Carlo integration calculates the 

weighted sum of H with the weighting factors of 
exp(−H/kBT).

• At (q, p) = (0, 0), the weighting factor is one, 
whereas at (q, p) = (10, 10), it is 3.7×10−44.

• The contributions to the average are different 
between sample points, which decreases 
computational efficiency.

• The efficiency is maximized when the number of 
sample points from a region is proportional to 
the weighting factor, exp(−H/kBT), of the 
region.→importance sampling
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3: Importance sampling
• Draw samples from 

a distribution 
proportional to the 
weight 
exp(−H/kBT).

• Evaluate H at each 
sample point and 
calculate the 
average.

• Plot the average 
<H> against the 
number of 
samples.
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A Perl program
$kT=1.0;

$pi=atan2(1.0,1.0)*4.0;

$max_npt=100;

for($npt=2;$npt<=$max_npt;$npt+=2) {

$val1=0.0;

for($i=0;$i<$npt**2;++$i) {

$x1=rand;

$x2=rand;

#Convert uniform distribution into normal distribution.

$q=sqrt(-2.0*$kT*log($x1))*cos(2.0*$pi*$x2);

$p=sqrt(-2.0*$kT*log($x1))*sin(2.0*$pi*$x2);

$H=0.5*$q**2+0.5*$p**2;

$val1+=$H; #Sum of total energy

}

printf("%d %f¥n",$npt**2,$val1/($npt**2));

}
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Comparison of the results (2)

Black: grid
Red: Monte Carlo
Green: Importance sampling

kBT = 1.0

Accuracy and efficiency are improved. 35



Sample generation (1)
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Sample generation (2)
• This method is possible only when the cumulative 

distribution function (CDF) can be calculated.
• It is impossible to obtain an analytical form of the 

CDF for a system of biomacromolecules, because 
the relation between bonded and non-bonded 
interactions is quite complicated.

• It is also impossible to calculate it numerically due 
to the huge internal degrees of freedom.

Use Markov chain
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Markov chain
• Let the probability of 

transition from state i to 
state j be πij.

• Let the probability of 
existence of state i before 
transition be ρ0

i, the 
probability of existence of 
state j after transition is 
given by,

• Transition probability 
satisfies the following:
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Example of Markov chain (1)

• Consider two states.
• Let transition probabilities be:

• Start with state 1

π11 = 0.6 π12 = 0.4
π21 = 0.3 π22 = 0.7

Step State 1 State 2
0 1 0
1 0.6 0.4
2 0.48 0.52
3 0.444 0.556
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Example of Markov chain (2)

• When stating
with state 2, the
probabilities
converge to the
same values.

• After convergence, ρ = ρπ.
• ρ is a eigenvector of matrix π.
→ ρ is uniquely determined by π.
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Metropolis method (1)

• We want to derive transition matrix from 
probability distribution.

• The detailed balance condition is the 
sufficient condition for ρ = ρπ.

• Metropolis method:
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Metropolis method (2)
• Randomly move an atom within a cube

centered at the atom with the edge
length of 2∆ to generate a new state.

• The move is accepted if the energy of the new state, ej, is 
lower than that of the original state, ei. Otherwise, the move is 
accepted with the following probability:

• If not accepted, the atom does not move.
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An application

• A harmonic oscillator
• Initial condition: (q, p) = (0, 0)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2000 4000 6000 8000 10000

<H
>

Number of samples

43



A Perl program
$nstep=10000; #Number of steps

($q,$p)=(0.0,0.0); #Initial states

$delta=1.0; #Maximum displacement

$kT=1.0;$m=1.0;$k=1.0; #kT, mass, force constant

$delta_q=$delta/sqrt($k);

$delta_p=$delta*sqrt($m);

open(OUT,">metropolis$delta.csv"); #Output file

$ave=0.0;

$H=&calc_H($q,$p); #Initial energy

for($i=1;$i<=$nstep;$i++) {

$q_new=$q+2.0*$delta_q*(rand()-0.5); #Trial move

$p_new=$p+2.0*$delta_p*(rand()-0.5); #Trial move

$H_new=&calc_H($q_new,$p_new);

$probability=exp(($H-$H_new)/$kT);

if($probability >= 1.0 || $probability >= rand()) { #Metropolis criterion

$q=$q_new;$p=$p_new;$H=$H_new;

}

$ave+=$H;

printf(OUT "%d,%f¥n",$i,$ave/$i) if($i % 100 == 0);

}

close(OUT);

sub calc_H { #Energy function

my ($q,$p)=@_;

return 0.5*$p*$p/$m+0.5*$k*$q*$q;

}
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Exercise 2
• Download metropolis.pl from the web page of 

this lecture and double-click the icon of the 
downloaded file to execute it.
– Plot <H> against the sample number. Check 

whether <H> converges to 1.
• Check the convergence changing the value 

for $delta.
– Try $delta=0.1.

• Discuss why the convergence depends on 
$delta.
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Application to biomacromolecules

• Metroplis method can be realized by choosing 
an atom randomly and moving the atom to a 
random position.

• However, such a move changes the bond length 
and causes increase of energy. →Probability of 
acceptance is very small.

• To avoid this problem, only dihedral angles are 
changed. But, this has following drawbacks.
→It is difficult to handle multiple molecules.
→In the region where atoms are closely packed, 
such as protein cores, change in the dihedral 
angle will cause steric clashes.
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Constant-temperature MD (1)
• Constant-temperature MD can generate a 

canonical ensemble.
• This can be more easily applied to the 

systems of biomacromolecules than Monte 
Carlo method.

• The ensemble average is given by the time 
average.

• Temperature is regulated by modifying the 
velocity.
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Constant-temperature MD (2)
• Nosé method
• Nosé-Hoover chain method
• Constraint method

– Only the coordinate part
follows the canonical distribution.

• Langevin dynamics
– Temperature is regulated by

friction and random force.
• Berendsen weak-coupling method

– Does not generate a canonical ensemble.
– Simple and easy to use.

Degrees of freedom 
of the heat bath are 
explicitly considered.

Heat bath
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Langevin dynamics

• The physical system exchanges heat with 
the heat bath through collisions with 
fictitious particles of the heat bath.

• Equations of motion

• Random force R satisfies the following:

   tm RvxFa  

       ttTkttt  B6,0 RRR

Friction Random force caused by the collisions

Average Variance and covariance
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An application

• A system composed of atoms with van der 
Waals interactions (vdw_langevin.pl)

$natom=4; # Number of particles

$width=10.0; # Width of initial

particle distribution

$fcap=1.0; # Force constant for

spherical boundary

$sigma=1.0; # Atom radius

$epsilon=1.0; # Well depth

$mass=1.0; # Atomic mass

$nstep=100000; # Number of MD steps

$nsave=100; # Frequency of saving

trajectory 

$dt=0.001; # Time step

$seed=120528; # Random seed

$gamma=10.0; # friction coefficient

$kT=1.0;

Average: 5.91 (exact value: 6)
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Berendsen weak-coupling method

1. Calculate instantaneous temperature T' at 
every step of velocity Verlet.

2. Scale velocities by a factor of χ. Constant τ
controls the speed of adjustment.
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How to send your report

• Use PowerPoint to create your report.
• Report should include the results and 

discussion of exercises 1 and 2.
• Send the PowerPoint file to 

tterada@iu.a.u-tokyo.ac.jp.
• Subject of the e-mail should be “Molecular 

modeling” and write your name and ID 
card number in the body of the e-mail.
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