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Today’s topics

• Equations of motion

• Molecular dynamics (MD) methods

– Exercise 1

• Comparability with experimental data

• Monte Carlo methods

– Exercise 2

• Constant-temperature MD methods
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Review of classical mechanics

• Newton’s equations of motion

F: force, m: mass, a: acceleration

F and a are 3D vectors→bold

m is a scalar number→italic

• a is second derivative of r with respect to t.
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Solution of equations of motion (1)

• Release a ball with a mass of m
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Two initial conditions are necessary to solve 

second order differential equations 4



Solution of equations of motion (2)

• Motion of a spring

Mass：m
Spring length：r
Equilibrium length：r0

Spring constant：k
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Solution of equation of motion (3)
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Potential energy and force (1)
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Potential energy and force (2)
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Energy conservation law (1)

• The sum of potential energy E and kinetic 

energy K (H = E + K) is conserved in an 

isolated system.

• Kinetic energy

• Proof
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Energy conservation law (2)

0 v = 0
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Energy conservation law (3)
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Molecular dynamics methods

• In the molecular dynamics (MD) methods, the force exerted 

on each atom is calculated from the potential energy function 

and the time evolutions of its position and velocity are 

calculated according Newton’s equations of motion.

• The equations of motion cannot be solved analytically for the 

system composed of three or more atoms.

→Use of numerical methods

• In the numerical methods, the position and the velocity of 

each atom are successively calculated at small intervals of 

time (time step: t).

• Accuracy is measured by the deviation of the energy from the 

initial value.
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The velocity Verlet method

① Calculate the force for 
the position at t.

② Calculate the velocity 
at t + Δt/2.

③ Calculate the position 
at t + Δt.

④ Calculate the force for 
the position at t + Δt.

⑤ Calculate the velocity 
at t + Δt.

⑥ Return to ② and 
repeat.
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A harmonic oscillator (1)

• Motion of a spring

Mass：m
Spring length：r
Equilibrium length：r0

Spring constant：k
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A harmonic oscillator (2)

• Analytical solution

Initial position: q0, initial velocity: 0

• A perl script implementing velocity Verlet (osc.pl)

    tqtvtqtq  sin,cos 00 

$q=1.0;$v=0.0;

$m=1.0;$k=1.0;

$dt=0.01;$nstep=100;

sub calc_force {

my $q=$_[0];

my $f=-$k*$q;

my $e=0.5*$k*$q**2;

return ($e,$f);

}

open(OUT,">osc$dt.csv");

($e,$f)=calc_force($q);

for($i=1;$i<=$nstep;$i++) {

$v+=0.5*$f/$m*$dt;

$q+=$v*$dt;

($e,$f)=calc_force($q);

$v+=0.5*$f/$m*$dt;

$H=0.5*$m*$v**2+$e;

print OUT $i*$dt,",",$q,

",",$v,",",$H,"¥n";

}
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Exercise 1

1. Download osc.pl and osc.xlsx from the web page 

of this lecture and run osc.pl with different $dt

values (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0).

2. For each $dt value, calculate the average of 

absolute difference, <|H–H0|>, between the total 

energy $H and its initial value H0 = 0.5.

3. Plot <|H–H0|> as a function of $dt using osc.xlsx.

4. Discuss how <|H–H0|> changes as $dt increases.
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Time step vs. error
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Appropriate choice of time step

• The smaller deviation of the total energy is 

obtained with the smaller time step.

• In general, the time step should be 1/10–1/20 

of the cycle of the fastest motion.

• As for the case of proteins, the fastest motion 

is the X–H bond stretching motion (X = C, N, 

O, or S). The frequency is about 3000 cm−1

and the cycle is about 10 fs.

• Therefore, 0.5–1.0 fs is used for Δt.
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A multi-particle system (1)

• A multi-particle system with van der Waals 

interaction (vdw.pl)

$width

$natom=3; # Number of particles

$width=10.0; # Width of initial

particle distribution

$scale=1.0; # Scaling factor for

initial velocity

$fcap=1.0; # Force constant for

spherical boundary

$sigma=1.0; # Atom radius

$epsilon=1.0; # Well depth

$mass=1.0; # Atomic mass

$nstep=100000; # Number of MD steps

$nsave=100; # Frequency of saving

trajectory 

$dt=0.001; # Time step

$seed=170615; # Random seed

19



A multi-particle system (2)

• Initial placement

– Particles are randomly placed within a cube of 
side length $width centered on the origin.

• Initial velocities

– Randomly assigned (parameter: $scale)

• Potential energy function

 

 
 























  

 

cut

2

cutcap

cut

cap

1

cap

1 1
6

6

12

12

0

4

rrrrf

rr
rE

rE
rr

E

ii

i

i

N

i

i

N

i

N

ij ijij




ri: distance from the origin

rcut: half of $width
20



A multi-particle system (3)

• Visualize the result with UCSF Chimera.

• Start Chimera.

• Choose “Tools”→“MD/Ensemble Analysis”→“MD 

Movie”, select “PDB” as Trajectory format, select 

“Single file” as PDB frames contained in, specify 

“vdw.pdb” on the Desktop as the file, and “OK.”

• Click the play button to start animation.

• Examine how the motion changes when the 

parameters change.
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Comparability with experimental data (1)

protein (one molecule)

22

Simulation 

system
Real system

solvent

Protein

(1023 molecules）

• Is the result of a molecular simulation 

comparable with the experimental data?



Comparability with experimental data (2)

23

• The real system can be reproduced by 
successively generating each state in a 
molecular simulation, but how to generate it?

Partitioned with walls 

that transmit heat

Successively generate 

each state



Comparability with experimental data (3)

• Experimental data is the weighted average of 

the observable over the states.

ri: probability of state i

• Probability of each state follows the canonical 

distribution.

ei: energy of state i

Z: partition function

→Generate each state following the canonical 

distribution.
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A harmonic oscillator (1)

• The canonical distribution of (q, p)

• Generate (q, p) following this distribution

– Evaluate the accuracy using the average of the total 

energy
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A harmonic oscillator (2)

• When m = k = kBT = 
1, this corresponds 
with the normal 
distribution.

• Check the 
convergence of <H> 
by increasing the 
number of samples.
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An example program

$kT=1.0;

$pi=atan2(1.0,1.0)*4.0;

$npt=10000;

open(OUT,">normal.csv");

$val1=0.0;

for($i=1;$i<=$npt;$i++) {

$x1=rand;

$x2=rand;

#Convert uniform dist. into normal dist.

$q=sqrt(-2.0*$kT*log($x1))*cos(2.0*$pi*$x2);

$p=sqrt(-2.0*$kT*log($x1))*sin(2.0*$pi*$x2);

$H=0.5*$q**2+0.5*$p**2;

$val1+=$H;            #Average of total energy

if($i % 100 == 0) {

printf(OUT "%d,%f¥n",$i,$val1/$i);

}

}
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A harmonic oscillator (3)
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• <H> quickly converges to the theoretical value, 1.
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Sample generation (1)
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Sample generation (2)

• The above-mentioned method is only applicable to the cases 

where the cumulative probability function is computable.

• As for the biomacromolecular systems, the relation between 

bonded and non-bonded interactions is so complex that it is 

impossible to analytically compute the cumulative probability 

function.

• Due to the large internal degree of freedom, numerical 

calculation is also impossible.

Use of Markov chain
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Markov chain

• Let πij be the transition 
probability from state i to 
state j.

• Let ρ0
i be the probability 

of state i before 
transition. Then, the 
probability of state j after 
transition is:

• The transition probability 
matrix satisfies:
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An example (1)

• Consider two states.

• The transition 

probabilities are:

• The plot shows the 

result of the 

simulation starting 

with state 1.
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An example (2)

• The probabilities
converge to the
same values if
the simulation
starts with state 2.

• Upon the convergence,
the equation, ρ = ρπ, holds.

• ρ is an eigenvector of π.
→Uniquely determined for a given π.
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The Metropolis method (1)

• We want to find π from ρ.

• If the detailed balance condition holds,

ρ = ρπ holds.

• Metropolis et al. proposed the following:
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The Metropolis method (2)

1. Move an atom of interest randomly within
a cube with side length 2Δ centered on
the atom.

2. If the energy of the destination state, ej, is lower than that of 
the original state, ei, accept the movement. If not, accept it 
with the following probability:

3. If not accepted, use the original state as the new state.
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Exercise 2

1. Download metropolis.pl from the web page of this 

lecture and run it.

2. Plot <H> as a function of the sample number and 

ascertain that <H> approaches to 1 as the 

sample number increases.

3. Run metropolis.pl with $delta = 0.1 and plot the 

result similarly.

4. How does the plot change by using a smaller 

$delta value? Discuss the reason for the change.
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metropolis.pl
$nstep=10000; #Number of steps

($q,$p)=(0.0,0.0); #Initial conditions

$delta=1.0; #Maximum displacement

$kT=1.0;$m=1.0;$k=1.0; #kT, mass, force constant

$delta_q=$delta/sqrt($k);

$delta_p=$delta*sqrt($m);

open(OUT,">metropolis$delta.csv"); #Output file

$ave=0.0;

$H=&calc_H($q,$p); #Initial energy

for($i=1;$i<=$nstep;$i++) {

$q_new=$q+2.0*$delta_q*(rand()-0.5); #Trial

$p_new=$p+2.0*$delta_p*(rand()-0.5); #Trial

$H_new=&calc_H($q_new,$p_new);

$probability=exp(($H-$H_new)/$kT);

if($probability >= 1.0 || $probability >= rand()) { #Judgement

$q=$q_new;$p=$p_new;$H=$H_new;

}

$ave+=$H;

printf(OUT "%d,%f¥n",$i,$ave/$i) if($i % 100 == 0);

}

close(OUT);

sub calc_H { #Energy function

my ($q,$p)=@_;

return 0.5*$p*$p/$m+0.5*$k*$q*$q;

}
37



Application to biomacromolecules

• “State” corresponds to “structure.”

• The Metroplis method can be performed by moving an arbitrary 

chosen atom.

• However, moving an atom changes the bond length and the energy 

increases in most cases.

→The trial is rarely accepted.

• To solve this problem, only dihedral angles are changed without 

changing the bond lengths and angles. But, there are still difficulties.

→Application to a multiple molecular system is difficult.

→In the protein core where atoms are densely packed, changing a 

dihedral angle tends to cause overlapping of atoms.
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Constant-temperature MD (1)

• Sampling from the canonical distribution is 

enabled by keeping the temperature constant in 

the MD simulation.

• Since MD simulations are conducted in the 

Cartesian coordinate system, they are more easily 

applied to biomacromolecules.

• The average is taken over time.
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Constant-temperature MD (2)

• Nosé’s method

• Nosé-Hoover chain method

– An improved method

• Constraint method

– Only the distribution of

the coordinates is canonical.

• Langevin dynamics

– Temperature is controlled by

random force and friction.

• Berendsen’s weak coupling method

– Distribution is not canonical.

– But frequently used because of its easiness and stability

Considers degree of 

freedom of heat bath

Heat bath
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Langevin dynamics

• Exchange of energy between the real system and the head 

bath occurs by the collision between the atoms of the real 

system and randomly moving fictitious particles of the heat 

bath.

– If the real system is hot, the energy is transmitted toward the 

heat bath and vice versa.

• Equations of motion

• R satisfies the following conditions:

       ttTkttt  B6,0 RRR

friction

   tm RvxFa  

force by collision with fictitious particles

average variance-covariance
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An example

• A multi-particle system with van der Waals 

interaction (vdw_langevin.pl)

$natom=4; # Number of particles

$width=10.0; # Width of initial

particle distribution

$fcap=1.0; # Force constant for

spherical boundary

$sigma=1.0; # Atom radius

$epsilon=1.0; # Well depth

$mass=1.0; # Atomic mass

$nstep=100000; # Number of MD steps

$nsave=100; # Frequency of saving

trajectory 

$dt=0.001; # Time step

$seed=170615; # Random seed

$gamma=10.0; # friction coefficient

$kT=1.0;
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Berendsen’s weak coupling

1. Calculate instantaneous temperature T' after 

each step of velocity Verlet

2. Scale the velocity by a factor of c. Parameter t

controls the speed of adaptation.
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Instructions for submission

• Put the results and discussion of the exercises in 

the slides of a PowerPoint file.

• Send the PowerPoint file as an attachment to 

email.

• Put “Molecular modeling” in the Subject field.

• Be sure to put your name and ID card number (if 

you are a student) in the body of the email.

• Send the email to Prof. Tohru Terada 

(tterada@iu.a.u-tokyo.ac.jp).  
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