May 16, 2019 Molecular Modeling and Simulation

# **Potential Energy**

Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tohru Terada

### Schedule

- 1. May 16
- 2. May 23
- 3. May 30

4. June 6

- **Potential Energy**
- Molecular Dynamics and Monte Carlo Methods
- Applications of Molecular Dynamics Methods
  - **Docking Simulations**

### Contents

- Practice of molecular orbital (MO) method
   Exercise 1
- Molecular mechanics
- Energy minimization
- Practice of molecular mechanics
  - Exercise 2

# Conformational energy

• When you exert a force on a object, the object is deformed and the "potential energy" of the object increases. Force



• Similarly, when a molecule changes its structure, its potential energy changes.

# Potential energy of a molecule

 Potential energy of a molecule can be calculated by solving the Schrödinger equation approximately with molecular orbital (MO) method.

$$\hat{H}_{elec} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$

$$\hat{H}_{\rm elec}\Phi = E_{\rm elec}\Phi$$

$$E = E_{\text{elec}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}}$$

*N*: Number of electrons *M*: Number of atoms  $Z_A$ : Atomic number of atom *A*  $\Phi$ : Wave function

Potential energy of the molecule

# Practice of MO calculation (1)

- In this lecture, we use quantum chemical calculation software, Gaussian 09W.
- Double-click the icon icon to start the graphic user interface (GUI) of this software, GaussView 5.0.



Control Panel

Molecule View Window <sup>6</sup>

# Practice of MO calculation (2)

- Click Ring Fragment button in the Control Panel, select benzene, and click within Molecule View Window
- Choose "Calculate" →
   "Gaussian Calculation Setup…"
   from the menu of the Control Panel



- 3. Select "Energy" as Job type, select "6-31G(d)" as Basis set in the Method tab, and click "Submit."
- 4. Save the input file as "benzene.gjf" on Desktop.
- 5. Click "OK" when Run Gaussian Window appears.

# Practice of MO method (3)

- 6. When the calculation has finished, click "はい" to close Gaussian window.
- 7. Select "benzene.log" in the Gaussian Job Completed window and click "OK."
- Choose "Results" → "Summary" from the menu of the Control Panel.
   E(RHF)<sup>\*</sup> indicates the potential energy of the molecule.
- \*1 a.u. = 627.509 391 kcal/mol

### **Technical terms**

- Method:
  - Hartree-Fock: the most basic ab initio method
  - Semi-empirical: applicable to a large system, but less accurate
  - DFT: more accurate and computationally less expensive.
     Electron correlation effect is partly considered.
- Basis Set:
  - STO-3G, 3-21G, 6-31G, 6-311G, etc, in order of complexity. The more complex basis set can approximate the molecular orbital the more accurately.
  - Diffuse (+, ++) and/or polarization [(d), (d,p), etc] functions are added as required.

# Change the structure

- After clicking Modify Bond button in the Control Panel, click two neighboring carbon atoms of the benzene molecule.
- Change the bond length.

| 🔁 G2:M1 - Bond Semichem SmartSlide (tm)      | ×                         |
|----------------------------------------------|---------------------------|
| Bond Type:                                   |                           |
| ○ None ○ — ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ |                           |
| Displacement                                 |                           |
| Atom 1: Translate group 💌                    | Atom 2: Translate group 💌 |
|                                              |                           |
| 0.770                                        | 2.000                     |
| 1.75000                                      | 3.080                     |
|                                              |                           |
| Ok Cancel                                    | Help                      |



 Calculate the potential energy. (Save the input file as benzene2.gjf on the Desktop.)

# Structural energy

- Examine how the energy changes as
  - Bond lengths
  - Angles
  - Dihedral angles
  - Interatomic distances between atoms that are not covalently bonded
  - change in simple model molecules.

# Diatomic molecule (1)

- 1. Download H2.gjf from this lecture's web page.
- 2. Choose "Gaussian 09W"  $\rightarrow$  "Gaussian 09W"  $\rightarrow$  from Start menu to start Gaussian 09W.
- 3. Choose "File"  $\rightarrow$  "Open" from the menu to open H2.gjf.
- 4. Choose "File"  $\rightarrow$  "Exit & Run" from the menu to start the calculation.
- 5. Save the output file as H2.out on the Desktop.

# Diatomic molecule (2)

- 6. When the calculation has finished, choose "File"  $\rightarrow$  "Exit" from the menu.
- Start GaussView 5.0. Choose "File" → "Open" from the menu of the Control Panel to open H2.out. (Select "Gaussian Output Files (\*.out \*.log)" as ファイ ルの種類.)
- 8. Choose "Results"  $\rightarrow$  "Scan" from the menu of the Control Panel.
- Right-click within the Scan plot window, choose "Save Data" from the menu, and save the data as H2\_scan.txt on the Desktop.

# Diatomic molecule (3)

Potential energy of  $H_2$  as a function of the bond length



- Open H2\_scan.txt with Excel and plot the potential energy against the bond length.
- The energy is well approximated with a fourth-order polynomial.
- Potential energy can be calculated at low computational cost with this polynomial function.

#### Potential energy function

Potential energy of  $H_2$  as a function of the bond length



- The bond length thermally fluctuates about the energy minimum bond length.
- In biomolecular simulations, the temperature is about 300 K.  $\rightarrow kT = 0.6$  kcal mol<sup>-1</sup> = 10<sup>-3</sup> a.u.
- The width of the fluctuation is about 0.04 Å.

Approximated with quadratic function<sup>15</sup>

### **Taylor series**

Taylor series of f(x) in the neighborhood of p.  $\Delta x = x - p$ .



#### **Comparison of dynamics**



#### Energy of three-atom molecule



Model: water



 The energy function is approximated as the sum of *r*-dependent and θdependent terms.

$$E(r,\theta) \approx k_b (r-r_0)^2 + k_a (\theta-\theta_0)^2$$

# Intermolecular interaction (1)

- 1. Start GaussView 5.0. Click the icon of Element Fragment in the Control Panel, and select "O" to show "Oxygen Tetravalent" in Current Fragment window.
- 2. Click on two different points within Molecule View window.
- 3. Select "C" from the Element Fragments to show "Carbon Tetrahedral" in the Current Fragment window. Click on one of hydrogen atoms of  $H_2O$ to replace it with  $CH_3$ .
- 4. Similarly, replace one hydrogen atom of another  $H_2O$  with  $CH_3$



# Intermolecular interaction (2)

- Choose "Calculate" → "Gaussian Calculation Setup…" from the menu of Control Panel. Select "Energy" as Job type, select "6-31G(d)" as Basis set, and click "Submit." Save the input file as "methanol2.gjf" on the Desktop.
- 6. Similarly, calculate energy for a single molecule. Save the input file as "methanol1.gjf" on the Desktop.
- 7. Calculate interaction energy as:

$$\Delta E = E_{\rm AB} - \left(E_{\rm A} + E_{\rm B}\right)$$

 $\Delta E = -230.0688122 - [2 \times (-115.0334869)]$ = -0.0018384 a.u. = -1.15 kcal mol<sup>-1</sup>

#### Interaction energy of ions





The interaction energy  $\Delta E$  is given by the  $E_{elec}$  term with  $q_i = q_j = 1$ .

$$E_{\text{elec}} = \frac{(q_i e)(q_j e)N_{\text{A}}}{4\pi\varepsilon_0 r_{ij}(10^{-10} \text{ m})} = (332.06 \text{ kcal mol}^{-1})\frac{q_i q_j}{r_{ij}}$$

#### Electrostatic potential (1)

- Electrostatic energy of a particle is calculated as the product of electrostatic potential (ESP) at the position and the charge of the particle.
- ESP is calculated from the charge distribution.

$$\varphi(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

• The right figure shows the ESP of a HF molecule.



### Electrostatic potential (2)

• ESP generated by a molecule is approximated by that generated by point charges placed at the centers of its atoms.

$$\varphi(\mathbf{r}) \approx \sum_{i} \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|}$$

- The point charges are determined to minimize the error between the original and the approximated ESPs.
  - Charge of H: 0.26
  - Charge of F: -0.26



#### Van der Waals interactions



Attraction between nonpolar molecules can only be calculated with the method that considers the electronic correlation effect.

# Origin of the attraction

Fluctuation of the electron cloud produce an instantaneous electric dipole moment even on a nonpolar molecule, which induces an electric dipole on nearby molecules.





#### Van der Waals energy function



 $\varepsilon = 0.36 \text{ kcal mol}^{-1}$ 

#### Components of interaction



#### Dihedral angle energy

#### Model: butane





Gaussian job file: butane.gjf



# Dihedral angle energy function

• Energy function of butane is expressed as the sum of a periodic function and van der Waals energy function.



#### Exercise 1

- Determine n,  $\delta$ ,  $\varepsilon$ , and  $\sigma$  of the potential energy function of butane.
  - Download "butane\_scan.xlsx" from this lecture's web page.
  - Choose "Plot"→"Plot Molecular Property" from the menu of Scan Plot window and select "Bond" from the pull-down menu and set atom indices to "1" and "4" to obtain the list of the distances between the first and fourth carbon atoms.

### Molecular mechanics

• QM calculation demands large computational cost.

 The computational cost can be reduced by using potential energy function that reproduces QM energy values.



### Force field parameters

- Force field parameters
  - Parameters used in the potential energy function.
     (equilibrium bond length, force constant, partial charge, etc.)
- Ab initio force field parameters
  - Derived from QM results.
- Empirical force field parameters
  - Determined so as to reproduce the structure and thermodynamic quantities.

# Problems and solutions (1)

- A biomacromolecule is composed of a large number of atoms.
  - It is difficult to apply the QM calculation to the whole molecule.
- Atoms are classified into atom types according to their chemical properties (type of hybridization or substituents). The same parameters are assigned to the atoms of the same atom type.
- Parameters are determined for model compound.

#### Atom types and model compounds



Jorgensen & Tirado-Rives, *J. Am. Chem. Soc.* **110**, 1657 (1988)

# Problems and solutions (2)

- In condensed (liquid) phase, molecules are close to each other. The interaction between two molecules is affected by the other molecules near the molecules.
  - The parameters determined in gas phase are not applicable.

Gas phase

![](_page_34_Picture_3.jpeg)

Condensed phase

# Effective potential energy $E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = E(\mathbf{r}_1, \mathbf{r}_2) + E(\mathbf{r}_1, \mathbf{r}_3) + E(\mathbf{r}_2, \mathbf{r}_3) + \Delta E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ $= E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2) + E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_3) + E^{\text{eff}}(\mathbf{r}_2, \mathbf{r}_3)$

 $E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ : energy of three-molecule system  $E(\mathbf{r}_1, \mathbf{r}_2)$ : energy of two-molecule system  $E^{\text{eff}}(\mathbf{r}_1, \mathbf{r}_2)$ : effective pairwise potential

Effect of the many-body interaction is incorporated in the effective pairwise potential.

Condensed phase

3

Parameters are determined to reproduce experiments. 36

### Water models (1)

|               | SPC    | TIP3P  |
|---------------|--------|--------|
| <i>r</i> (OH) | 1.0    | 0.9572 |
| ∠HOH          | 109.47 | 104.52 |
| r*            | 1.7766 | 1.7683 |
| Е             | 0.1554 | 0.1520 |
| $q_{H}$       | 0.41   | 0.417  |

r(OH) [Å], ∠HOH [degree]  
r\* [Å<sup>12</sup> kcal mol<sup>-1</sup>], 
$$2r^* = \sqrt[6]{2}\sigma$$
  
 $\varepsilon$  [Å<sup>6</sup> kcal mol<sup>-1</sup>]  
 $q_0 = -2q_H$ 

![](_page_36_Picture_3.jpeg)

Van der Waals interaction is calculated only between oxygen atoms.

Jorgensen *et al. J. Chem. Phys.* **79**, 926 (<sup>37</sup>983)

### Water models (2)

|                      | SPC   | TIP3P | Expt. |
|----------------------|-------|-------|-------|
| d                    | 0.971 | 0.982 | 0.997 |
| $\Delta H_{\rm vap}$ | 10.77 | 10.45 | 10.51 |
| $C_{ ho}$            | 23.4  | 16.8  | 17.99 |
| α                    | 58    | 41    | 25.7  |
| К                    | 27    | 18    | 45.8  |

*d*: density [g cm<sup>-3</sup>],  $\Delta H_{vap}$ : heat of vaporization [kcal mol<sup>-1</sup>]  $C_p$ : molar isobaric specific heat [cal mol<sup>-1</sup> K]  $\alpha$ : coefficient of thermal expansion [10<sup>-5</sup> K<sup>-1</sup>]  $\kappa$ : compressibility [10<sup>-6</sup> atm<sup>-1</sup>] All values are calculated or measured at 25 °C, 1 atm. Jorgensen *et al. J. Chem. Phys.* **79**, 926 (<sup>38</sup>)

### Force field parameter sets

- Force field parameter sets are distributed along with molecular simulation software.
- AMBER
  - http://www.ambermd.org/
- CHARMM
  - http://www.charmm.org/
- GROMOS, GROMACS
  - http://www.igc.ethz.ch/gromos/
  - http://www.gromacs.org/

# Energy minimization (1)

- Changes the conformation to the one having lower potential energy.
- Also called "structure optimization."
- Must be done in advance of the molecular dynamics simulation to avoid atomic overlaps.

# Energy minimization (2)

- First-order algorithm
  - Steepest descent method
     Simple, but many steps are required until convergence.
  - Conjugate gradient method
     When the energy function is a quadratic form of *n* variables, the minimum is reached in *n* steps.
- Second-order algorithm
  - Newton-Raphson method Quick to converge, but calculation of Hessian ( $\nabla^2 E$ ) requires a large computational cost.

# Modeling a small molecule (1)

- 1. Start UCSF Chimera.
- Choose "Tools"→"Structure Editing"→
   "Build Structure."
- 3. Choose "Start Structure" and Add "fragment" and select "benzene" as the fragment.
- 4. Enter "DXN" (dibenzo-*p*-dioxin) in the box of Residue name and click "Apply."

| 🔍 Build Structure  |                       |            |
|--------------------|-----------------------|------------|
|                    | Start Structure 😐     |            |
| C atom             |                       |            |
| fragment           | Fragment Parameters   |            |
| C SMILES string    | Fragment benzene      |            |
| C PubChem CID      |                       |            |
| C peptide sequence | Residue name: DXN     |            |
| nucleic sequence   |                       |            |
| Put atoms innew mo | odel 😐 named: scratch |            |
| Color ne           | w atoms by element    |            |
|                    | Apply                 |            |
|                    |                       |            |
|                    |                       |            |
|                    |                       |            |
|                    |                       |            |
|                    |                       | Close Help |

# Modeling a small molecule (2)

- 5. Select a hydrogen atom by clicking it while pressing the Ctrl key.
- 6. Change into the "Modify structure" mode, set as shown in the right, and "Apply." →The selected atom is changed to oxygen.

| Real Build Structure                                                                                      | — |       | $\times$ |
|-----------------------------------------------------------------------------------------------------------|---|-------|----------|
| Modify Structure 🛁                                                                                        |   |       |          |
| Change selected atoms to                                                                                  |   |       |          |
| Element Bonds Geometry                                                                                    |   |       |          |
| 0 2 trigonal                                                                                              |   |       |          |
| Retain current atom names                                                                                 |   |       |          |
| Set atom names to: 01                                                                                     |   |       |          |
| ✓ Connect to pre-existing atoms if appropriate                                                            |   |       |          |
| □ Focus view on modified residue                                                                          |   |       |          |
| Color new atoms by element                                                                                |   |       |          |
| Residue Name                                                                                              | 1 |       |          |
| Ceave unchanged                                                                                           |   |       |          |
| C Change modified residue's name to UNK                                                                   |   |       |          |
| $^{\rm C}$ Put just changed atoms in new residue named $\overline{\rm UNK}$ in chain $\overline{\rm het}$ | r |       |          |
| Apply                                                                                                     | _ |       |          |
| Delete selected atoms/bonds                                                                               |   |       |          |
|                                                                                                           |   | Close | Help     |

# Modeling a small molecule (3)

- 7. Select the hydrogen atoms bonded to the oxygen atom.
- 8. Set as shown in the right and "Apply."
  →Changed to carbon.
- 9. Using this function, generate the model of dibenzo-*p*-dioxin.

![](_page_43_Figure_4.jpeg)

| ~                              |                                                                                                                             |  | ~ |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|---|
|                                | Modify Structure 🛁                                                                                                          |  |   |
|                                | Change selected atoms to<br>Element Bonds Geometry<br>C 3 trigonal<br>C Retain current atom names<br>C Set atom names to: C |  |   |
| Connect to                     | pre-existing atoms if appropriate                                                                                           |  |   |
| Focus view                     | on modified residue                                                                                                         |  |   |
| Color new a                    | toms by element                                                                                                             |  |   |
| Residue Nam                    | e                                                                                                                           |  |   |
| <ul> <li>Leave unch</li> </ul> | anged                                                                                                                       |  |   |
| C Change mo                    | dified residue's name to UNK                                                                                                |  |   |
| • Put just cha                 | anged atoms in new residue named UNK in chain het                                                                           |  |   |
|                                | Apply                                                                                                                       |  |   |
|                                | Delete selected atoms/bonds                                                                                                 |  |   |

# **Energy** minimization

- Choose "Tools"→"Structure Editing"→"Add Charge."
- 2. Select "AMBER ff14SB" and "AM1-BCC" for Standard residues and Other residues, respectively, and click "OK."
- 3. Select "+0" for Net Charge and "OK."
- Choose "Tools"→"Structure Editing"→ "Minimize Structure" and click "minimize."
- Find the energy value becomes smaller in "Favorites"→"Reply Log."

# SMILES

- SMILES is a representation of the molecular structure.
- Select "Add SMILES string" in the Build Structure window in the "Start structure" mode.
- Examples of SMILES string.
  - benzene: c1ccccc1

(Lower cases are used for aromatic atoms)

- dibenzo-*p*-dioxin: c13ccccc1Oc2cccc2O3
- alanine: [N+][C@@H](C)C(=O)[O-]

#### Exercise 2

- Generate this molecule and do energy minimization.
  - Use SMILES "C1CCCC=C1" to generate the ring

![](_page_46_Figure_3.jpeg)

Oseltamivir: an antiviral drug (trade name: Tamiflu) Formula: C<sub>16</sub>H<sub>28</sub>N<sub>2</sub>O<sub>4</sub>

• Save the image of the energy-minimized structure in the PNG format.

#### Submission instructions

- Attach the Excel file of Exercise 1 and the image file of Exercise 2 to an email.
- Put the energy values before and after the energy minimization in the body of the email.
- Put "Molecular Modeling" in the Subject field.
- Be sure to put your name, ID card number (if you are a student), and registration ID (e.g. 19001) in the body of the email.
- Send the email to Prof. Tohru Terada (tterada@iu.a.u-tokyo.ac.jp).