

Alternative menaquinone biosynthetic pathway

Tohru Dairi

Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

Alternative Biosynthetic Pathway

Alternative Biosynthetic Pathway

Menaquinone Biosynthetic Pathways

KS-505a has a *o*-succinylbenzoate as a partial structure

Producer; *Streptomyces argenteolus* strain A-2

Biosci. Biotech. Biochem., 71, 3072-3081 (2007).

The function of MK in organisms

For human

Essential vitamin for

blood coagulation,

- bone metabolism,
- cell-cycle regulation

For bacteria

Essential for

respiration {mainly in
Gram (+) bacteria}.

MK biosynthetic pathway in E. coli

Tracer experiments with *S. coelicolor* by Prof. Seto *et al.*

J. Am. Chem. Soc. 130, 5614-5615 (2008).

Candidate genes estimated by in silico

Disruption of candidate genes

PCR analyses of genomic DNAs of the candidate gene-disrupted strains

4326-D 4326-W 4327-D 4506-D 4506-W 4550-W

W: wild strain D: disruptant

Phenotype of disruptant

Left; Wild strain Right; SCO4550 disruptant

+ MK

MK

SCO4506, SCO4326 and SCO4327-disruptants also required MK for their growth

<u>Isolation of mutants requiring MK</u> <u>for their growth by mutagenesis</u>

Some mutants were complemented with SCO1494, SCO1495 and SCO1496 genes

Characterization of the mutant

One mutant can grow in the presence of chorismate

Assay method to isolate intermediates

SCO4506 \rightarrow SCO4327 \rightarrow SCO4550 \rightarrow SCO4326 \rightarrow MK

Isolation of an intermediate accumulated in SCO4327 disruptant

SCO4327-disruptant accumulated futalosine

Reactions catalyzed by MqnA & E

Recombinant TTHA0556 (SCO4327) converted futalosine into the next one

SCO4327

SCO4327 catalyzed the reaction to release hypoxanthine

An attempt to convert DHFL to the next one by recombinant TTHA1092 (SCO4550)

 ★ MBP-fused recombinant TTHA1092 (An orthologue of SCO4550 in *Thermus thermophilus* HB8)

Isolation of an intermediate accumulated in SCO4326 disruptant

An intermediate accumulated in SCO4326 disruptant

Cyclic DHFL was easily converted to shunt products

1 year to purify cyclic DHFL

Reaction catalyzed by MqnC

Reaction catalyzed by TTHA1568 (SCO4326)

Reaction product reacts on 2-mercaptoethanol

Novel pathway for MK biosynthesis

Distribution of the pathway

At least three orthologs were identified in the following microorganisms:

• Epsilon category (Gram positive) (*Helicobacter, Wolinella, Thiomicrospira, Campylobacter, Arcobacter, Nitratiruptor, Sulfurovum*)

- Delta category (Gram negative) (Geobacter, Pelobacter, Desulfovibrio, Desulfococcus, Anaeromyxobacter, Syntrophobacter)
- Acidobacteria (Gram negative) (Acidobacteria, Solibacter)

• Synergistetes (Gram negative) (Syntrophomonas)

• Bacillales of Firmicutes (Gram positive) (Bacillus halodurans Bacillus clausii)

• Lactobacillus category of Firmicutes (Gram positive) (Symbiobacterium)

• Clostridia category of Firmicutes (Gram positive) (*Carboxydothermus, Desulfotomaculum, Pelotomaculum, Desulforudis, Heliobacterium, Moorella*)

•Actinobacteria (Gram positive) (*Streptomyces*, *Frankia*, *Acidothermus*, *Salinispora*)

• Planctomyces (Gram negative) (*Rhodopirellula*)

- Chlamydia (Gram negative) (Chlamydia, Chlamydophila)

- Spirochete (Gram negative) (Leptospira)
- Green nonsulfur bacteria (Gram positive) (Herpetosiphon)
- Deinococcus-Thermus (Gram positive) (Deinococcus, Thermus)
- Hyperthermophilic bacteria (Gram negative) (Aquifex)

• Archaea: Euryarchaeota (*Archaeoglobus, Thermoplasma*)

• Crenarchaeota (Ignicoccus, Pyrobaculum, Caldivirga, Thermoproteus, Nitrosopumilus)

No bacteria possessing both classical and alternative pathways

No bacteria possessing both

ubiquinone and alternative pathways

<u>ADF is an intermediate of futalosine pathway</u> <u>in some bacteria including *H. pylori*</u>

Aminodeoxyfutalosine (ADF) is an intermediate ?

MK biosynthetic genes were clustered in two loci in *Acidothermus cellulolyticus* (actinobacterium)

Adenine, Adenosine >> Hypoxanthine, Inosine in a cell

Functional analysis of adenosine deaminases

Substrate: Aminodeoxyfutalosine

Functional analysis of futalosine hydrolase

<u>MqnB in Helicobacter pylori</u>

<u>Does HP0089 function as MqnB ? \Rightarrow in vitro analysis</u>

Functional analysis of HP0089 (futalosine hydrolase)

Functional analysis of HP0089 (futalosine hydrolase)

Diversity of the early step of MK pathway

Menaquinone is essential for growth

Left; Wild strain Right; MqnD-disruptant

+ Menaquinone

Mqn genes-disrupted mutants required menaquinoine (0.2 mg/mL) for their growth

An attractive target for the chemotherapeutics

<u>to Helicobacter pylori</u>

An example for screening of inhibitors

Bioassay with paper disck

Bacillus subtilis (+ classical pathway)

Bacillus halodurans (+ new pathway)

1, +solvent 2, +sample 3, +sample+MK

J. Antibiot., **64**, 151 (2011).

Identified Inhibitors

Identified Inhibitors

Tirandamycin B MIC 1 mg/ml J. Antibiot., 70, 798 (2017)