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Figure 1 ACTN3 genotype frequency in controls, elite sprint/power athletes, and endurance athletes. Compared with healthy white

controls, there is a marked reduction in the frequency of the ACTN3 577XX genotype (associated with a-actinin-3 deficiency) in elite white
sprint athletes; remarkably, none of the female sprint athletes or sprint athletes who had competed at the Olympic level (25 males and 7 females)
were a-actinin-3 deficient. Conversely, there is a trend toward an increase in the 577XX genotype in endurance athletes, although this association
reaches statistical significance only in females. Error bars indicate 95% Cls.
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The 3,000 rice genomes project

The 3,000 rice genomes project’**"

Abstract

Background: Rice, Oryza sativa L, is the staple food for half the world's population. By 2030, the production of rice
must increase by at least 25% in order to keep up with global population growth and demand. Accelerated genetic
gains in rice improvement are needed to mitigate the effects of climate change and loss of arable land, as well as
to ensure a stable global food supply.

Findings: We resequenced a core collection of 3,000 rice accessions from 89 countries. All 3,000 genomes had an
average sequencing depth of 14x, with average genome coverages and mapping rates of 940% and 925%,
respectively. From our sequencing efforts, approximately 18.9 million single nucleotide polymorphisms (SNPs) in rice
were discovered when aligned to the reference genome of the temperate japonica variety, Nipponbare. Phylogenetic
analyses based on SNP data confirmed differentiation of the O. sativa gene pool into 5 varietal groups - indica,
aus/boro, basmati/sadri, tropical japonica and temperate japonica.

Conclusions: Here, we report an international resequencing effort of 3,000 rice genomes. This data serves as a
foundation for large-scale discovery of novel alleles for important rice phenotypes using various bioinformatics and/or
genetic approaches. It also serves to understand the genomic diversity within Q. sativa at a higher level of detail. With
the release of the sequencing data, the project calls for the global rice community to take advantage of this data as a
foundation for establishing a global, public rice genetic/genomic database and information platform for advancing rice
breeding technology for future rice improvement.

Keywords: Oryza sativa, Genetic resources, Genome diversity, Sequence variants, Next generation sequencing
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“The most dramatic response to
genomic selection was observed

for the lowly heritable traits DPR,

PL, and SCS. Genetic trends
changed from close to zero to
large and favorable, resulting in
rapid genetic improvement in
fertility, lifespan, and health in a
breed where these traits eroded
over time.”

Garcia-Ruiz et al.

Proc Natl Acad Sci 113(28): E3995-4004
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Genomic prediction contributing to a promising
global strategy to turbocharge gene banks

Xiaoging Yu', Xianran Li', Tingting Guo', Chengsong Zhu', Yuye Wu?, Sharon E. Mitchell’,
Kraig L. Roozeboom?, Donghai Wang?, Ming Li Wang?, Gary A. Pederson’, Tesfaye T. Tesso?,
Patrick S. Schnable', Rex Bernardo® and Jianming Yu'™

The 7.4 million plant accessions in gene banks are largely underutilized due to various resource constraints, but current
genomic and analytic technologies are enabling us to mine this natural heritage. Here we report a proof-of-concept study
to integrate genomic prediction into a broad germplasm evaluation process. First, a set of 962 biomass sorghum
accessions were chosen as a reference set by germplasm curators. With high throughput genotyping-by-sequencing (GBS),
we genetically characterized this reference set with 340,496 single nucleotide polymorphisms (SNPs). A set of 299
accessions was selected as the training set to represent the overall diversity of the reference set, and we phenotypically
characterized the training set for biomass yield and other related traits. Cross-validation with multiple analytical methods
using the data of this training set indicated high prediction accuracy for biomass yield. Empirical experiments with a
200-accession validation set chosen from the reference set confirmed high prediction accuracy. The potential to apply the
prediction model to broader genetic contexts was also examined with an independent population. Detailed analyses on
prediction reliability provided new insights into strategy optimization. The success of this project illustrates that a global,
cost-effective strategy may be designed to assess the vast amount of valuable germplasm archived in 1,750 gene banks.
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Abstract

Key message A new pre-breeding strategy based on an
optimization algorithm is proposed and evaluated via
simulations. This strategy can find superior genotypes
with less phenotyping effort.

Abstract Genomic prediction is a promising approach
to search for superior genotypes among a large number
of accessions in germplasm collections preserved in gene

xr

genotype among candidate genotypes and showed that the
El-based strategy required fewer genotypes to identify the
best genotype than the usual and random selection strategy.
Therefore, Bayesian optimization can be useful for applying
genomic prediction to pre-breeding and would reduce the
number of phenotyped accessions needed to find the best
accession among a large number of candidates.
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* ridge regression, LASSO, elastic net
* glmnet etc.
BEETIL
* BLUP
* rrBLUP

s E
e SYM,RVM (H1—FIL3E)
¢ kernlab etc.

* random forest
* randomForest etc

N A Xk

* Bayesian linear regression (Bayesian ridge, Bayesian LASSO)
* BLRetc

* RKHS regression (#—%JLi%)
* RKHSw
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